Heats of Combustion, Heats of Formation, Heats of Hydrogenation and Bond Dissociation Energies

Germain Henri Hess (1802 - 1850)

Hess's Law (1840)

- The total heat liberated in a series of chemical reactions is equal to the sum of the heats liberated in the individual steps.
- The heat liberated, ΔH^{o} , (enthalpy) is a state function.
- •State functions are independent of path.

The "Heat" Liberated in Either Route is the Same

The Standard State is the zero point for chemical reactions.

A temperature of 298°K and 1 atmosphere pressure

Carbon as graphite

Hydrogen as a gas

Oxygen as a gas

Chlorine as a gas

Bromine as a liquid

 $\Delta H^{o} = 0 \text{ kcal/mol}$

Combustion of Graphite and Hydrogen at 298°K

Combustion of Methane

Not All Compounds Are More Stable Than Their Elements: Acetylene

Not All Compounds Are More Stable Than Their Elements: Cyclopropane

Combustion of Hexane Constitutional Isomers

$$\Delta H_{f}^{\circ} = -39.9 \text{ kcal/mol}$$

$$\Delta H_{f}^{\circ} = -41.1 \text{ kcal/mol}$$

$$\Delta H_{comb}^{\circ}$$

$$\Delta H_{comb}^{\circ}$$

$$\Delta H_{comb}^{\circ}$$

$$\Delta H_{comb}^{\circ}$$

$$6CO_2 + 7H_2O$$
 $\Delta H^o_{(comb)} = -1,042 \text{ kcal/mol}$

Heats of Hydrogenation

 $\Delta H_f^o = 0.0 \text{ kcal/mol}$

Heats of Hydrogenation - 2

standard state

ΔH_f^o of Methanol and Its Products of Oxidation

Bond Dissociation Energy (BDE)

$$DH^{o}(RH) = \Delta H_{f}^{o}(H^{\bullet}) + \Delta H_{f}^{o}(R^{\bullet}) - \Delta H_{f}^{o}(RH)$$

Bond Dissociation Energy and Hybridization

Carbon Hybridization

BDEs of C-C, C-X and C-H Bonds

Alkyl Substituent

Bond Length (Angstroms)

C-C Bonds

Butane Isomers

Formation of C_4 - C_{18} Even Primary Radicals from Their n-Alkanes

The End