FINAL EXAM

Organic Chemistry

Chemistry 225b; 9 A.M., Friday, May 9, 2008

TA:	Section Da	v:		Section Ti	me:
		· <i>y</i> • <u> </u>			
Take a few moments to comfortable. Important the worksheets. The worksheets asked to do so. Put your	t points and unkno ksheets will not be s with an additiona	wns gra ll 1/	are in bold tynded. There are 2 hour for rev	rpe. Do a useful Tab iew. STO	ll preliminary work oles on pages 15-17. The writing when you a
For question 2, do 1 of 3 For question 3, do 3 of 4. For question 4, do 5 of 6. For question 5, do 4 of 6. For question 8, do 4 of 5.					
REMEMBER: Neatness	s is to your advanta	ge.	If we can't rea	nd it; We ca	n't grade it.
1. Structure/ Spectroscopy (30 pts)		5.	Kinetics/ Thermodynar		
2. Mechanisms (30 pts)		6.	Synthesis	(30 pts.)	
3. Reactions I (30 pts)		7.	Structure II	(36 pts.)	
4. Potpourri (30 pts)		8.	Reactions II	(32 pts.)	

1. (30 pts; 5 x 6 pts) **Structure/Spectroscopy:** The alkyl halide **A**, whose mass spectrum (Fig. 1) is shown below, forms a Grignard reagent **B**. When an excess of **B** reacts with aldehyde **C**, compound **D** is formed. The infrared (Fig. 2) and mass (Fig. 3) spectra of **D** are shown below.

a)	Explain briefly how Fig. 1 reveals the structure of A ?
b)	What is the significance of the absorption at ~3300 cm ⁻¹ in Fig. 2?
c)	What is the molecular weight of \mathbf{D} ? Assume $z=1$ for m/z .
d)	What is the structure of \mathbf{D} ? Explain briefly.
e)	What is the structure of the ion that represents the base peak (intensity = 100) in Fig. 3?

2. (30 pts) **Mechanism:** Provide a mechanism (curved arrow formalism) for **one** of the following three reactions.

a)
$$CH_3OH$$
, cat. H_2SO_4 CH_3O

b)
$$\frac{1) O_3}{2) (CH_2)_2S} \longrightarrow CH_3CHO$$

c)
$$\frac{1) \text{ BH}_3}{2) \text{ H}_2\text{O}_2, \text{ aq. NaOH}} \dots \text{OH}$$

3. (30 pts; 3 x 10 pts) **Reactions I:** Provide the structures in **three** of the following **four** problems. **Pay attention to stereochemistry.** If you do four problems, **cross out** the one you do not want graded.

d) A
$$\xrightarrow{\text{peracid}}$$
 B $\xrightarrow{\text{H}_3O^+}$ C $\xrightarrow{\text{cat.}}$ $\xrightarrow{\text{H}_2SO_4}$

- 4. (30 pts; 5 x 6 pts) **Potpourri:** Complete **five** of the following **six** problems. If you do six problems, **cross out** the one you do not want graded..
- a) N. Y. Times Crossword Puzzle, 41 Down. Clue: C₄H₈. (Monday, December 2, 2002)

b) The mass spectrum of dichloromethane, CH_2Cl_2 , has molecular ions at M^+ = 84, 86 and 88 with an intensity ratio of 9:6:1, respectively. See page 16. Explain the intensity ratio.

c) The structure of the optically inactive, racemic dibromide derived from the free radical bromination of (R)-1-bromo-2-methylpentane. Why is it optically inactive and racemic?

d) The structure and name of the cyclohexane, C_8H_{16} , whose two chair conformations are achiral and equal in energy.

e) A mixture of enantiomers (20% enantiomeric excess) has a rotation [α] = -24°. What is the rotation of the dextrorotatory enantiomer? Show work.

f) The difference in ΔH_f^o (kcal/mol) of structures **A** and B is 0 kcal/mol. Explain.

- 5. (32 pts; 4 x 8 pts) **Kinetics/Thermodynamics:** Complete **four** of the following **six** problems. If you do five or six problems, **cross out** the one(s) you do not want graded.
- a) Of cis- and trans-3-hexene, the one with the greater heat of combustion. Explain briefly with a diagram.

b) The tosylate that undergoes an E_2 faster in the presence of C_2H_5OH/C_2H_5ONa . Explain briefly.

c) The compound more likely to react via an $S_{\rm N}2$ or E2 reaction. Explain.

d) A nearly equal mixture of two monochloro compounds is anticipated in the free radical chlorination of 2,3-dimethylbutane. Explain and illustrate briefly. [relative rates: $1^{\circ} = 1$; $2^{\circ} = 4.5$; $3^{\circ} = 5.5$]

e) The difference in energy between the two chair conformations of cyclohexane $\bf 1$ is 0.6 kcal/mol. Illustrate and show work. [Axial vs. equatorial for monosubstituted cyclohexanes: i- $C_3H_7=2.1$ kcal/mol; $C_2H_5=1.9$ kcal/mol; $C_3H_7=2.1$ kcal/m

f) The heat of reaction in the monochlorination of cyclohexane. See page 15. **Show work**.

6. (30 pts) **Synthesis:** A student wishes to study the effect of hindered bases on E2 elimination reactions. To this end, she requires the alcohol **1**. Because alcohol **1** is not available commercially, she designs and executes a synthesis of **1** using only isobutylene (2-methyl-1-propene) and formaldehyde as her only sources of carbon that find their way into **1**. All reagents and solvents were available to her, and to you, as you reconstruct the synthetic plan that she may have used.

7. (36 pts) **Structure II**: Compound **A**, $C_7H_{14}O$, which has an infrared absorption at 1710 cm⁻¹, reacts with methyl magnesium bromide to produce **B**, $C_8H_{18}O$. Compound **B** does not react with Cr (VI) reagents but it readily reacts with H_2SO_4 to form several compounds having the formula C_8H_{16} . One of these compounds **C**, gives **D** and **E** upon ozonolysis and dimethylsulfide reduction. Both **D** and **E** have the formula C_4H_8O , but **D** is oxidized to **F** ($C_4H_8O_2$) with aqueous chromic acid while **E** is inert to these conditions. Compound **F** is not n-butyric acid. Compound **C** is measurably less exothermic than its geometrical isomer **G** upon catalytic hydrogenation. What are the structures **A-F**? [**Hint:** First, what are **D** and **E**? The infrared absorption is not essential but it is helpful.]

8. (32 pts; 4 x 8 pts) **Reactions II:** Do **four** of the following **five** problems by efficient pathways. If you do five, **cross out** the one you do not want graded.

Bond Dissociation Energies (kcal/mol)

$$(X-Y ----> X \cdot + Y \cdot)$$
 DH° (RH) = ΔH_f° (R') + ΔH_f° (RH) - ΔH_f° (RH)

Note: These values are the one's used principally in Wade's text. We will use these values. Newer values have been determined by Blanksby and <u>Ellison</u>, *Acc. Chem. Res.* **2003**, *36*, 255. The Ellison paper is <u>here</u> in pdf format. For a discussion of heats of reaction, BDEs and heats of formation, <u>click here</u>.

C-H Bonds

СН3-Н	СН3СН2-Н	(CH ₃) ₂ CH-H	(CH ₃) ₃ C-H	СН2=СНСН2-Н	PhCH ₂ -H	СН2=СН-Н
104	98	95	91	87	85	108

C-C Bonds

СН3-СН3	CH ₃ CH ₂ -CH ₃	(CH ₃) ₂ CH-CH ₃	CH ₃ CH ₂ -CH ₂ CH ₃	(CH ₃) ₃ C-CH ₃
88	85	84	82	81

C-Cl Bonds

CH ₃ -Cl CH ₃ CH ₂ -Cl		(CH ₃) ₂ CH-Cl	(CH ₃) ₃ C-Cl	
84	81	80	79	

C-Br Bonds

CH ₃ -Br	CH ₃ CH ₂ -Br	(CH ₃) ₂ CH-Br	(CH ₃) ₃ C-Br	
70	68	68	65	

C-I Bonds

CH ₃ -I CH ₃ CH ₂ -I		(CH ₃) ₂ CH-I	(CH ₃) ₃ C-I	
56	53	53	50	

H-X and X-X Bonds

١	H-Cl	H-Br	H-I	Н-Н	Cl-Cl	Br-Br	I-I	НООН
I	103	88	71	104	58	46	36	51

Natural Abundance of Common Isotopes

Hydrogen ${}^{1}H = 99.985\%$ ${}^{2}H = 0.015\%$

Carbon $^{12}C = 98.90\%$ $^{13}C = 1.10\%$

Nitrogen $^{14}N = 99.63\%$ $^{15}N = 0.37\%$

Sulfur $^{32}S = 95.02\%$ $^{33}S = 0.75\%$

 34 S = 4.21% 36 S = 0.02%

Chlorine $^{35}\text{Cl} = 75.77\%$ $^{37}\text{Cl} = 24.23\%$

Bromine $^{79}\text{Br} = 50.69\%$ $^{81}\text{Br} = 49.31\%$

Periodic Table