EXAM 1

Comprehensive Organic Chemistry

CHEMISTRY 225

Friday, February 15, 2008

o look over the enotes, or laptops. Trawing or compute graded.	Sect. Time:exam. Answer each question on the exam paper. Important clues and structures are in bold . utations on the work sheets at the end of the exam.
notes, or laptops. rawing or compute graded.	. Important clues and structures are in bold .
rawing or compu	•
e graded.	utations on the work sheets at the end of the exam.
es.	
d in your exam	when you are asked to do so.
ess is to your ad	vantage.
on I _	
I _	
e (Do 1 of 3) _	
ion II	
emistry _	
	ess is to your adon I E(I) E(Do 1 of 3) Emistry

Name:			
Name:			

1. **Conformation I:** (20 pts) Draw the most stable **Newman projection** conformations of 2,3-dimethylbutane viewed along the C₂-C₃ sigma bond. Place the appropriate energies in the Newman projections below. [Use the **circles** as templates for the Newman projections.] Calculate the energy (kcal/mol) of both conformations. Place your answers in the appropriate **boxes**. **Show work**. [H/H, eclipsed, 1.0 kcal/mol; CH₃/H eclipsed, 1.3 kcal/mol; C₂H₅/H, eclipsed, 1.4 kcal/mol; CH₃/CH₃, eclipsed, 3.0 kcal/mol; CH₃/CH₃, gauche, 0.9 kcal/mol; CH₃/C₂H₅, gauche, 1.0 kcal/mol.] **Show your work!**

2.	Potpourri: (30	pts.; equal weight)	Circle the best answer(s) in	each of the following:

a) 2-Methylpentane and 2,3-dimethylbutane have a difference of 0.8 kcal/mol in their heats of formation. What is the difference in their heats of combustion in kcal/mol?

0 0.8 -5 5 157 -157

- b) The heat of formation of 2-methylpentane is -41.7 kcal/mol (previous question). What is the expected heat of formation of 2-methylhexane? Show work.
- c) **Circle** the acids that are readily deprotonated by NaOCH₃.

NH₃ cyclopropane HCCH NH₄⁺ CH₃CH₂CO₂H

d) Circle the species with sp² hybridization

 NH_4^+ ethylene BF_4^- ethane $(CH_3)_2CO$

e) Circle the compounds with net dipole moments.

cis-BrCH=CHBr BrCH $_2$ CH $_2$ Br BrHC=C=CHBr CHBr $_3$ H $\stackrel{\text{Br}}{-}$ H Br

4
4

Name:			
vainc.			

- 3. **Resonance:** (20 pts.) The concept of resonance plays an important role in organic chemistry. Explain and illustrate the role of resonance in **one** of the following cases. Use orbitals in your explanations.
 - a) The higher pKa value of peracid RCO₃H vs. carboxylic acid RCO₂H
 - b) The lower bond dissociation energy of the sp³ C-H bond in propene compared with the same bond in propane.
 - c) Relative stabilization of the carbocation RCHOCH₃ vs. RCHCl

- 4. **Conformation II:** (20 pts.) Vinyl compound **A**, $C_{10}H_{18}$, absorbs a maximum of one mole of hydrogen to form a 1,4-disubstituted cyclohexane **B** that has K_{eq} =0 kcal/mol for the equilibrium between its chair conformations.
 - a) (12 pts.) What are the structures of **A** and **B**? Explain briefly.

b) (8 pts.) Place the substituents for **A** in their appropriate locations in the chair equilibrium shown below.

- 5. **Thermochemistry:** (20 pts) Alkane **A**, C_6H_{12} gives a **single** free radical monochlorination product **B**. No other monochlorinated products are possible. The overall heat of the reaction is $\Delta H^o_{rxn} = -30$ kcal/mol. BDEs: $Cl_2 = 58$ kcal/mol; HCl = 103 kcal/mol; R-H: (primary) = 98 kcal/mol, (secondary) = 95 kcal/mol, (tertiary) = 91 kcal/mol.
- a) What are the structures and names of alkanes A and B?
- b) Show the propagation steps for this reaction.

c) Calculate the heat of each propagation step and the BDE of R-Cl. **Illustrate and show work.**

N	-
Name:	

Work Sheets

Name:	_ 8
-------	-----

Work Sheets

Name:	Ģ

Work Sheets