EXAM 1

Comprehensive Organic Chemistry

CHEMISTRY 225

Friday, February 15, 2008
NAME (print clearly): \qquad

TA: \qquad Sect. Day: \qquad Sect. Time: \qquad

Take a few moments to look over the exam. Answer each question on the exam paper.
No calculators, texts, notes, or laptops. Important clues and structures are in bold.
Do all preliminary drawing or computations on the work sheets at the end of the exam. The work sheets will not be graded.

The exam is 55 minutes.
STOP writing and hand in your exam when you are asked to do so.
REMEMBER: Neatness is to your advantage.

1. (20pts) Conformation I
2. (20 pts) Potpourri II \qquad
3. (20 pts) Resonance (Do 1 of 3) \qquad
4. (20 pts) Conformation II
5. (20 pts) Thermochemistry \qquad

Total (100 pts)

1. Conformation I: (20 pts) Draw the most stable Newman projection conformations of 2,3-dimethylbutane viewed along the $\mathrm{C}_{2}-\mathrm{C}_{3}$ sigma bond. Place the appropriate energies in the Newman projections below. [Use the circles as templates for the Newman projections.] Calculate the energy ($\mathrm{kcal} / \mathrm{mol}$) of both conformations. Place your answers in the appropriate boxes. Show work. $\left[\mathrm{H} / \mathrm{H}\right.$, eclipsed, $1.0 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3} / \mathrm{H}$ eclipsed, $1.3 \mathrm{kcal} / \mathrm{mol} ; \mathrm{C}_{2} \mathrm{H}_{5} / \mathrm{H}$, eclipsed, $1.4 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3} / \mathrm{CH}_{3}$, eclipsed, $3.0 \mathrm{kcal} / \mathrm{mol}$; $\mathrm{CH}_{3} / \mathrm{CH}_{3}$, gauche, $0.9 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3} / \mathrm{C}_{2} \mathrm{H}_{5}$, gauche, $1.0 \mathrm{kcal} / \mathrm{mol}$.] Show your work!

2. Potpourri: (30 pts.; equal weight) Circle the best answer(s) in each of the following:
a) 2-Methylpentane and 2,3-dimethylbutane have a difference of $0.8 \mathrm{kcal} / \mathrm{mol}$ in their heats of formation. What is the difference in their heats of combustion in $\mathrm{kcal} / \mathrm{mol}$?

0 $0.8 \quad-5$ $5 \quad 5$ 157
-157
b) The heat of formation of 2-methylpentane is $-41.7 \mathrm{kcal} / \mathrm{mol}$ (previous question). What is the expected heat of formation of 2-methylhexane? Show work.
c) Circle the acids that are readily deprotonated by NaOCH_{3}.

$$
\mathrm{NH}_{3} \text { cyclopropane } \quad \mathrm{HCCH} \quad \mathrm{NH}_{4}^{+} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}
$$

d) Circle the species with sp^{2} hybridization
$\mathrm{NH}_{4}^{+} \quad$ ethylene $\quad \mathrm{BF}_{4}^{-} \quad$ ethane $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
e) Circle the compounds with net dipole moments.

$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
$\mathrm{BrHC}=\mathrm{C}=\mathrm{CHBr}$
CHBr_{3}

3. Resonance: (20 pts.) The concept of resonance plays an important role in organic chemistry. Explain and illustrate the role of resonance in one of the following cases. Use orbitals in your explanations.
a) The higher pKa value of peracid $\mathrm{RCO}_{3} \mathrm{H}$ vs. carboxylic acid $\mathrm{RCO}_{2} \mathrm{H}$
b) The lower bond dissociation energy of the $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond in propene compared with the same bond in propane.
c) Relative stabilization of the carbocation RCHOCH_{3} vs. RCHCl
4. Conformation II: (20 pts.) Vinyl compound $\mathbf{A}, \mathrm{C}_{10} \mathrm{H}_{18}$, absorbs a maximum of one mole of hydrogen to form a 1,4-disubstituted cyclohexane \mathbf{B} that has $\mathrm{K}_{\mathrm{eq}}=0 \mathrm{kcal} / \mathrm{mol}$ for the equilibrium between its chair conformations.
a) (12 pts.) What are the structures of \mathbf{A} and \mathbf{B} ? Explain briefly.
b) (8 pts.) Place the substituents for \mathbf{A} in their appropriate locations in the chair equilibrium shown below.

5. Thermochemistry: (20 pts) Alkane $\mathbf{A}, \mathrm{C}_{6} \mathrm{H}_{12}$ gives a single free radical monochlorination product \mathbf{B}. No other monochlorinated products are possible. The overall heat of the reaction is $\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-30 \mathrm{kcal} / \mathrm{mol}$. $\mathrm{BDEs}: \mathrm{Cl}_{2}=58 \mathrm{kcal} / \mathrm{mol} ; \mathrm{HCl}=103$ $\mathrm{kcal} / \mathrm{mol} ; \mathrm{R}-\mathrm{H}:($ primary $)=98 \mathrm{kcal} / \mathrm{mol},($ secondary $)=95 \mathrm{kcal} / \mathrm{mol},($ tertiary $)=91$ $\mathrm{kcal} / \mathrm{mol}$.
a) What are the structures and names of alkanes \mathbf{A} and \mathbf{B} ?
b) Show the propagation steps for this reaction.
c) Calculate the heat of each propagation step and the BDE of R-Cl. Illustrate and show work.

Name:

Work Sheets

Name:

Work Sheets

Name:

Work Sheets

