EXAM 2 CHEMISTRY 220 Friday, October 15, 2010

NAME (print):

TA:______ Sect. Day:______ Sect. Time:_____

Take a few moments to look over the exam. Answer each question on the exam paper.

No calculators or electronic devices. You may use molecular models. Important clues and structures are in **bold**. There is a **Periodic Table** on page 10.

Do all **preliminary** drawing or computations on the work sheets at the end of the exam. The work sheets will not be graded. You may detach the work sheets from the exam.

The exam is 55 minutes.

STOP writing and hand in your exam when you are asked to do so.

REMEMBER: Neatness is to your advantage.

1. (30 pts) Reactions I (Do 5 of 6)

2. (24 pts) Reactions II (Do 4 of 5)

3. (22 pts) Thermochemistry

4. (24 pts) Potpourri (Do 4 of 5)

Total (100 pts)

1) **Reactions I:** (30 pts.; equal weight) Provide the structures of the product(s) in **5 of 6** of the following reactions. Answer any queries that are posed, (e. g.; opt. act.?). Very brief commentary is welcome. If you do more than five questions, cross out the one that you do not want graded. Pay attention to stereochemistry, mechanisms and optical activity!

... continued

2) Reactions II: (24 pts., equal weight) Answer 4 of 5 of the following questions. Be succinct! If you do more than four questions, cross out the one that you do not want graded.

a) (*R*)-1-Bromo-2-methylbutane (1) has been reported to give a 2/3 ratio ($S_N 2/E2$) of products upon treatment with sodium ethoxide in ethanol. What **percentage** of $S_N 2$ product might you expect when the reaction is conducted with (±)-1? **Explain briefly**. Draw the structures of the reaction products derived from (*R*)-1.

b) Will potassium tertiary butoxide $[(CH_3)_3COK]$ or sodium methoxide give a higher $S_N 2/E2$ ratio upon reaction with 1-bromopentane? Explain and illustrate briefly.

4

... continued

c) **Circle** the compound that will remain in excess when a limited amount (less than stoichiometric) of KOH in ethanol reacts with equal amounts of **1** and **2**. **Draw** the structures of the two possible chlorine-free, non-oxygen containing products. **Give brief explanations.**

d) Cholesterol **1** is the enantiomer shown below. Excluding the geometry of the double bond, how many stereoisomers of cholesterol are possible? **Show work.** Provide the CIP designation for the quaternary carbon designated by the arrow.

... continued

e) Structure **1** has a plane of symmetry and must be optically inactive. But yet structure **1** must be an eclipsed comformation which is high in energy and therefore not well-populated. Name structure **1**. Assign R,S centers where needed. Why is structure **1** optically inactive in spite of the eclipsed conformation?

3) **Thermochemistry:** (22 pts.) Problem Set 3 directed you to the alkane module of Organic Reactions Go Online (ORGO). Here is the solution to #2. Answer the three underlined questions under a), b) and c). For part b you will also be asked to compute the heats of the two propagation steps and the heat of the overall reaction.

a) (5 pts.) The initiation step?

...continued

b) (12 pts.) Provide the two propagation steps and the overall reaction for this process. **Place the reactants and products in the appropriate boxes.** Compute the heats of each reaction using the data in the BDE Table (pg. 10)

c) (5 pts.) How many dichlorocyclopentanes are possible?. **Draw** them with the aid of the templates below. No need to worry about enantiomers.

8

4) Potpourri: (20 pts.) Do 4 of 5 questions. You may do either b) or d). If you do more than four questions, cross out the one that you do not want graded, either b) or d).

a) One of these enantiomers is not like the others. Circle it and provide its R,S – configuration at the relevant centers. Is it dextro- or levorotatory?

b) Natural tartaric acid has a specific rotation of $[\alpha] = +12^{\circ}$. What is the observed specific rotation of a solution containing a 2/1 ratio of natural and meso-tartaric acid, respectively? **Show reasoning**.

c) Circle the terms that apply to E2 reactions.

Isotope effect 1^{st} order reaction stepwise rehybridization intermediate d) A 3:1 mixture of (*S*)- and (*R*)-carvone, respectively, has an optical rotation of +36°. What is the rotation of the pure (*S*)-enantiomer? The (*R*)-enantiomer? **Show work**.

e) In 1978 racemic **1** was synthesized and was found to be a mixture of two racemic diastereomers. The method used was similar to the methodology of the 2010 Nobel Prize Medalists, only copper was used instead of palladium. i) What C-C bond was formed? ii) Why is structure **1** a mixture of two racemates?

+ V1 http://cla	asses.yale.edu/chem	220/STUDYAIDS	/thermo/BDE.html	BDE			¢ Q• G	oogle			
	s▼ Orbis OED N			FEZ Bookma	rks 🔻 Yale Phor	nebook Jmo					
		Bor	nd Dissociat	ion Energ	gies (kcal/n	ıol)					ſ
$(X - Y > X \cdot + Y \cdot)$											
$DH^{o}(RH) = \Delta H_{f}^{o}(R\cdot) + \Delta H_{f}^{o}(H\cdot) - \Delta H_{f}^{o}(RH)$											
Note: These values are the one's used principally in Wade's text. We will use these values. Newer values have been determined by Blanksby and <u>Ellison</u> , Acc. Chem. Res. 2003, 36, 255. The Ellison paper is <u>here</u> in pdf format. For a discussion of heats of reaction, BDEs and heats of formation, <u>click here</u> .											
C-H Bonds											
CH ₃ -H CH ₃ CH ₂ -H (CH ₃) ₂ 104 98 95		CH ₂ =CHCH ₂ -H F 37 8		-H							
C-C Bonds											
CH ₃ -CH ₃ CH ₃ CH ₂ -CH ₃ (0		H ₃ CH ₂ -CH ₂ CH ₃	(CH ₃) ₃ C-CH ₃ 81								
C-Cl Bonds											
CH ₃ -Cl CH ₃ CH ₂ -Cl (CH) 84 81 80	(CH ₃) ₂ CH-Cl (CH ₃) ₃ C-	CI									
C-Br Bonds											
CH ₃ -Br CH ₃ CH ₂ -Br (CH 70 68 68	3)2CH-Br (CH3)3C- 65	Br									
C-I Bonds											
CH ₃ -I CH ₃ CH ₂ -I (CH ₃) ₂ CH-I (CH ₃) ₃ C-I											
56 53 53 50											
H-X and X-X Bonds		LIOON									
H-Cl H-Br H-I H-H C 103 88 71 104 54	Cl-Cl Br-Br I-I 8 46 36	HOOH 51									
	-										
hydrogen 1				-							helium 2
1.0079 Ithium beryllium						Г	boron ca	ton nitrogen	oxygen	fluorine	He 4.0026 neon
³ ⁴ Li Be							5	ton nitrogen 6 7 C N	8 0	9 F	¹⁰ Ne
6.941 9.0122 sodium magnesium 11 12						5	aluminium si 13 ´	011 14.007 icon phosphorus 4 15	15,999 sulfur 16	18,998 chlorine 17	20.180 argon 18
Na Mg 22.990 24.305	r		1				AI S 26.982 28 gallium germ	Si P 30.974 anium arsenic	S 32.065	CI 35.453 bromine	Ar 39.948 krypton
19 20 K Ca	scandium 11tanium 21 22 Sc Ti	vanadium 23 24 V Cr	manganese iron 25 26 Mn Fe	27 CO	nickel copper 28 29 Ni Cu	30 Zn	31 3	anium arsenic 32 33 34 AS	selenium 34 Se	35 Br	36 Kr
39.098 40.078 rubidium strontium 37 38	44.966 47.867 yttrium zirconium 39 40	50.942 51.996 niobium molybdenu 41 42			58.693 63.546 palladium silver 46 47	65.39 cadmium 48	69.723 72	2.61 74.922 in antimony 50 51	78.96 tellurium 52	79.904 lodine 53	83.80 xenon 54
Rb Sr	Y Zr	Nb Mo	Tc Ru	Rh	Pd Ag	Cd	In S	n Sb	Те	126.90	Xe
85.468 87.62 caesium barium 55 56 57-70	88.906 91.224 lutetium hafnium 71 72	92.906 95.94 tantalum tungsten 73 74	[98] 101.07 rhenium osmium 75 76	77	platinum gold 78 79	112.41 mercury 80	81 8	8.71 121.76 ad bismuth 32 83	127.60 polonium 84	astatine 85	131.29 radon 86
Cs Ba + 132.91 137.33 francium radium	Lu Hf 174.97 178.49 lawrencium rutherfordium	Ta W 180.95 183.84 dubnium seaborgiun	Re Os 186.21 190.23 bohrium hassium		Pt Au 195.08 196.97 nunnilium unununium	Hg 200.59 ununblum	204.38 20	208.98	Po	At [210]	Rn
⁸⁷ 88 89-102 Fr Ra ★★	103 104 Lr Rf	105 106 Db Sg	107 108 Bh Hs	109	110 111 Jun Uuu	112		14 UQ			
[223] [226]	[262] [261]	[262] [266]	[264] [269]	[268]	[271] [272]	[277]	[2	89			
*Lootheride	lanthanum cerium 57 58	praseodymium neodymiur 59 60	promethium samarium 61 62	m europium g 63	adolinium terbium 64 65	dysprosium 66	holmium eri 67 i	bium thulium 58 69	ytterbium 70		
*Lanthanide series	La Ce 138.91 140.12	Pr Nd	Pm Sm [145] 150.36	1 Eu	Gd Tb 157.25 158.93		Ho E	Er Tm 7.26 168.93	Yb 173.04		
* * Actinide series	actinium thorium 89 90	protactinium uranium 91 92	neptunium plutonium 93 94	n americium 95	96 97	californium e 98	insteinium fer 99 1	nium mendeleviun 00 101	n nobelium 102		
	Ac Th 232.04	Pa U 231.04 238.03	[237] Pu	1 Am [243]	[247] Bk	Cf [251]		m Md	No [259]		

Name	
1 (unite	

Work Sheets

Work Sheets

Work Sheets