EXAM 2
CHEMISTRY 220
Friday, October 15, 2010

NAME (print): \qquad
TA: \qquad Sect. Day: \qquad Sect. Time: \qquad

Take a few moments to look over the exam. Answer each question on the exam paper.
No calculators or electronic devices. You may use molecular models. Important clues and structures are in bold. There is a Periodic Table on page 10.

Do all preliminary drawing or computations on the work sheets at the end of the exam. The work sheets will not be graded. You may detach the work sheets from the exam.

The exam is 55 minutes.
STOP writing and hand in your exam when you are asked to do so.
REMEMBER: Neatness is to your advantage.

1. (30 pts) Reactions I (Do 5 of 6)
2. (24 pts) Reactions II (Do 4 of 5)
3. $(22 \mathrm{pts})$ Thermochemistry
4. (24 pts) Potpourri (Do 4 of 5)
1) Reactions I: (30 pts.; equal weight) Provide the structures of the product(s) in $\mathbf{5}$ of $\mathbf{6}$ of the following reactions. Answer any queries that are posed, (e. g.; opt. act.?). Very brief commentary is welcome. If you do more than five questions, cross out the one that you do not want graded. Pay attention to stereochemistry, mechanisms and optical activity!
a)
 opt. act.
b)

c)

d)

A (major) $+\mathbf{B}$ (minor)
opt. act.? opt. act.?
(R,S - configuration if applicable)
e) (R) $-\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CDHBr}$
$\xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{KOH}, \mathrm{CH}_{3} \mathrm{SH}}$
A (R,S - configuration?)
f)

$\xrightarrow[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}}$ A

$$
\text { (} \mathrm{T}=\text { tritium })
$$

2) Reactions II: (24 pts., equal weight) Answer $\mathbf{4}$ of $\mathbf{5}$ of the following questions. Be succinct! If you do more than four questions, cross out the one that you do not want graded.
a) (R)-1-Bromo-2-methylbutane (1) has been reported to give a $2 / 3$ ratio $\left(\mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 2\right.$) of products upon treatment with sodium ethoxide in ethanol. What percentage of $\mathrm{S}_{\mathrm{N}} 2$ product might you expect when the reaction is conducted with (\pm)-1? Explain briefly. Draw the structures of the reaction products derived from $(R) \mathbf{- 1}$.
b) Will potassium tertiary butoxide $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COK}\right]$ or sodium methoxide give a higher $\mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 2$ ratio upon reaction with 1-bromopentane? Explain and illustrate briefly.
c) Circle the compound that will remain in excess when a limited amount (less than stoichiometric) of KOH in ethanol reacts with equal amounts of $\mathbf{1}$ and $\mathbf{2}$. Draw the structures of the two possible chlorine-free, non-oxygen containing products. Give brief explanations.

1

2
d) Cholesterol $\mathbf{1}$ is the enantiomer shown below. Excluding the geometry of the double bond, how many stereoisomers of cholesterol are possible? Show work. Provide the CIP designation for the quaternary carbon designated by the arrow.

e) Structure $\mathbf{1}$ has a plane of symmetry and must be optically inactive. But yet structure 1 must be an eclipsed comformation which is high in energy and therefore not wellpopulated. Name structure 1. Assign R,S centers where needed. Why is structure 1 optically inactive in spite of the eclipsed conformation?

1
3) Thermochemistry: (22 pts.) Problem Set 3 directed you to the alkane module of Organic Reactions Go Online (ORGO). Here is the solution to \#2. Answer the three underlined questions under a), b) and c). For part b you will also be asked to compute the heats of the two propagation steps and the heat of the overall reaction.

a) (5 pts.) The initiation step?
b) (12 pts.) Provide the two propagation steps and the overall reaction for this process.

Place the reactants and products in the appropriate boxes. Compute the heats of each reaction using the data in the BDE Table (pg. 10)

c) (5 pts.) How many dichlorocyclopentanes are possible?. Draw them with the aid of the templates below. No need to worry about enantiomers.

4) Potpourri: (20 pts.) Do $\mathbf{4}$ of $\mathbf{5}$ questions. You may do either b) or d). If you do more than four questions, cross out the one that you do not want graded, either b) or d).
a) One of these enantiomers is not like the others. Circle it and provide its $\mathrm{R}, \mathrm{S}-$ configuration at the relevant centers. Is it dextro- or levorotatory?

b) Natural tartaric acid has a specific rotation of $[\alpha]=+12^{\circ}$. What is the observed specific rotation of a solution containing a $2 / 1$ ratio of natural and meso-tartaric acid, respectively? Show reasoning.
c) Circle the terms that apply to E2 reactions.

Isotope effect $1^{\text {st }}$ order reaction stepwise rehybridization intermediate
d) A 3:1 mixture of (S) - and (R)-carvone, respectively, has an optical rotation of $+36^{\circ}$. What is the rotation of the pure (S)-enantiomer? The (R)-enantiomer? Show work.
e) In 1978 racemic 1 was synthesized and was found to be a mixture of two racemic diastereomers. The method used was similar to the methodology of the 2010 Nobel Prize Medalists, only copper was used instead of palladium. i) What C-C bond was formed? ii) Why is structure $\mathbf{1}$ a mixture of two racemates?

Bond Dissociation Energies（kcal／mol）

$$
\begin{gathered}
(\boldsymbol{X} \cdot \boldsymbol{Y} \rightarrow-\cdots \boldsymbol{X} \cdot+\boldsymbol{Y} \cdot) \\
\mathrm{DH}^{\mathrm{o}}(\mathrm{RH})=\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{R} \cdot)+\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}^{\cdot}\right)-\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{RH})
\end{gathered}
$$

Note：These values are the one＇s used principally in Wade＇s text．We will use these values．Newer values have been determined by Blanksby and Ellison，Acc．Chem．Res．2003，36，255．The Ellison paper is here in pdf format．For a discussion of heats of reaction，BDEs and heats of formation， click here．

C－H Bonds

C－C Bonds

$\mathrm{CH}_{3}-\mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{3}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{2}-\mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{3}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{3}$
88	85	84	82	81
8				

C－Cl Bonds

$\mathrm{CH}_{3}-\mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}$
84	81	80	79

C－Br Bonds

$\mathrm{CH}_{3}-\mathrm{Br}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Br}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$
70	68	68	65

C－I Bonds

$\mathrm{CH}_{3}-\mathrm{I}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$
56	53	53	50

H－X and X－X Bonds

| $\mathrm{H}-\mathrm{Cl}$ | $\mathrm{H}-\mathrm{Br}$ | $\mathrm{H}-\mathrm{I}$ | $\mathrm{H}-\mathrm{H}$ | $\mathrm{Cl}-\mathrm{Cl}$ | $\mathrm{Br}-\mathrm{Br}$ | $\mathrm{I}-\mathrm{I}$ | HOOH |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 103 | 88 | 71 | 104 | 58 | 46 | 36 | 51 |

$\stackrel{\substack{\text { modosen } \\ \mathrm{H}}}{ }$																		＋
Licmen	（ee												$\begin{array}{\|c} \operatorname{laman}_{5} \\ \mathrm{~B} \end{array}$	$\mathrm{C}_{6}^{c_{6}}$	$\stackrel{\text { movan }}{N}$		$\stackrel{\text { asme }}{\text { Lama }}$	Ne
sill	${ }^{\text {max }}$												131	$\xrightarrow{129}$	${ }^{15}$	sictur	${ }^{\text {anduc }}$	${ }^{1819}$
Na	Mg												AI	Si	P	S	Cl	Ar
为			${ }^{\text {cosemm }}$	22	${ }^{23}$	${ }^{\text {chamam }}$	nemem	${ }_{26}{ }^{106}$	${ }^{\text {anat }}$	${ }_{28}^{\text {anat }}$	${ }^{\text {amaed }}$	30		32	边	${ }^{\text {cen }}$		
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
com	come			${ }^{\text {cosem }}$	${ }^{41}$	com	43	${ }^{4}$		${ }^{46}$	47	48	${ }_{4}$	50	\％	${ }^{52}$	${ }_{5}^{53}$	${ }_{54}{ }^{5}$
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
\％		5770	\％			${ }^{\text {chem }}$	comm	（	7r	${ }^{\text {and }}$	a	${ }^{\text {amam }}$	81	${ }^{82}$	${ }^{83}$	${ }^{84}$	\％${ }^{3}$	${ }_{86}$
Cs	Ba	＊	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
\％	cas	$\stackrel{89}{*}+102$				${ }_{\text {－}}^{106}$		（103\％	cos	边		边		－				
Fr	Ra	＊			Dbel	Sg	Bh	${ }_{\text {ras }}$				Uub		Uuq				

＊Lanthanide series	$\begin{gathered} \text { Lan } \\ 57 \end{gathered}$	Ce	Pr	$\stackrel{60}{\mathrm{No} d}$	Pm	Sm	$\begin{aligned} & \text { encen } \\ & \text { Eu } \end{aligned}$	$\begin{gathered} \text { Gd } \\ \text { Gd } \end{gathered}$	Tb	Dy	$\begin{aligned} & \text { H7 } \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & { }^{68} \\ & \text { Er } \end{aligned}$	$\begin{aligned} & \substack{\text { nulum } \\ 69 \\ \mathrm{Tm}} \end{aligned}$	Yb
＊＊Actinide series		coit												2
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Work Sheets

Work Sheets

Work Sheets

