EXAM 1
 CHEMISTRY 220

Friday, September 24, 2010

NAME (print):

TA: \qquad Sect. Day: \qquad Sect. Time: \qquad

Take a few moments to look over the exam. Answer each question on the exam paper.
No calculators or electronic devices. You may use molecular models. Important clues and structures are in bold. There is a Periodic Table on page 7.

Do all preliminary drawing or computations on the work sheets at the end of the exam. The work sheets will not be graded. You may detach the work sheets from the exam.

The exam is 55 minutes.
STOP writing and hand in your exam when you are asked to do so.
REMEMBER: Neatness is to your advantage.

1. (20 pts) Conformation I
2. (20 pts) Conformation II
3. (25 pts.) Potpourri
4. (20 pts) Thermochemistry
5. (15 pts) Bonding/Orbitals
[^0]1. Conformation I: (20 pts) For the eclipsed and staggered conformations of 2,2dimethybutane viewed along the $\mathrm{C}_{2}-\mathrm{C}_{3}$ sigma bond, draw a Newman projection of the most stable eclipsed and staggered conformations. Place the energies for each interaction in the Newman projections below. [Use the circles as templates for the Newman projections.] Calculate the total energy ($\mathrm{kcal} / \mathrm{mol}$) of both conformations. Place your answer in the appropriate box. $\left[\mathrm{H} / \mathrm{H}\right.$, eclipsed, $1.0 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3} / \mathrm{H}$ eclipsed, 1.3 $\mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3} / \mathrm{CH}_{3}$, eclipsed, $3.0 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3} / \mathrm{CH}_{3}$, gauche, $0.9 \mathrm{kcal} / \mathrm{mol}$.] Show your work!

Staggered

Eclipsed

2. Conformation II: (20 pts) Consider the stereoisomer of 1-chloro-1,4dimethylcyclohexane (1) shown here.

a) (10 pts) Draw the chair conformations below so that the equilibrium arrows are correct. Be sure all groups are clearly labeled axial or equatorial.

chair A
chair B
b) (10 pts) What is the value of $\Delta\left(\Delta \mathrm{G}^{\mathrm{o}}\right)$ for the above equilibrium given the following Avalues for the monosubstituted (X) cyclohexane: $\mathrm{X}=\mathrm{Cl}=0.5 \mathrm{kcal} / \mathrm{mol} ; \mathrm{X}=\mathrm{CH}_{3}=$ $1.8 \mathrm{kcal} / \mathrm{mol} ; \mathrm{X}=\mathrm{C}_{2} \mathrm{H}_{5}=1.9 \mathrm{kcal} / \mathrm{mol}$? Show calculations.

Chair A energy = \qquad Chair B energy= \qquad
3. Potpourri: (25 pts.; equal weight) Circle the best answer(s) where applicable in each of the following:
a) Estimate the difference in the heat of combustion and heat of formation in $\mathrm{kcal} / \mathrm{mol}$ for cis- and trans-1,4-dimethylcyclohexane. Explain briefly.
b) Circle the "acids" that are readily deprotonated by n-butyllithium (n$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Li}$).
ethanol $\quad \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{NH}_{3} \quad \mathrm{NH}_{4}^{+} \quad$ acetylene
c) Circle the species with sp^{2} hybrid atoms.

HCN ethylene $\quad \mathrm{CO}_{2} \quad \mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2} \quad\left[\mathrm{BeCl}_{3}\right]^{-1}$
d) Briefly explain and illustrate why $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ has a net dipole while trans $-\mathrm{ClCH}=\mathrm{CHCl}$ does not. [Newman projections of the most stable conformations of 1,2-dichloroethane might be helpful.]
e) The following "acids" all have resonance stabilized conjugate bases. Rank these acids (low pKa to high pKa) with the numbers $1-5$, respectively. [Most acidic gets number 1.]

4. Thermochemistry: (20 pts.) n-Heptane ($\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}=-44.8 \mathrm{kcal} / \mathrm{mol}$) and 2-methylhexane $\left(\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}=--46.6 \mathrm{kcal} / \mathrm{mol}\right)$ both have the formula $\mathrm{C}_{7} \mathrm{H}_{16}$.
a) (5 pts.) What type of isomers are they?
b) (5 pts .) What is the difference in their heats of combustion?
c) (10 pts.) Prove part b) with a "Standard State" illustration of the combustion of the two isomers. [Your diagram should show the products of combustion and the number of moles of each.] Write an equation for the heat of combustion of n-heptane using its heat of formation.
5. Bonding/Orbitals: (15 pts) The "planar" compound $\mathbf{1}$ has a dipole moment. Explain and illustrate with an orbital diagram how this is possible.

Name:

Periodic Table

Name:

Work Sheet

Name:

Work Sheet

Name:

Work Sheet

[^0]: Total (100 pts)

