EXAM 1
CHEMISTRY 220a
Friday, September 24, 2004

NAME (print):

TA: \qquad Day: \qquad Time: \qquad

Take a few moments to look over the exam. Answer each question on the exam paper.
Important clues and structures are in bold.
Do all preliminary drawing or computations on the work sheets at the end of the exam. The work sheets will not be graded.

The exam is 55 minutes.

STOP writing and hand in your exam when you are asked to do so.
REMEMBER: Neatness is to your advantage.

1. Structure/Conformation (30 pts) \qquad
2. Conformation (20 pts)
3. Potpourri (30 pts)
4. Orbitals (20 pts)

Total (100 pts)

1. Structure/Conformation (30 pts): Limonene, which is isolated from lemon grass, is a $\mathbf{C}_{\mathbf{1 0}}$ hydrocarbon that contains a 6-membered ring and two double bonds.
a) (5 pts) In addition to carbon, what other atoms are present in limonene and how many are there of each kind? Show your reasoning.

Addition of hydrogen to the double bonds of limonene (alkene \rightarrow alkane) produces two \quad 1,4disubstituted cyclohexane stereoisomers, $\mathbf{A}\left(\mathrm{C}_{10} \mathrm{H}_{20}\right)$ and \mathbf{B}.
b) (5 pts) What is the formula of \mathbf{B} ? Why?

Continued ...

Compound \mathbf{A} has an energy difference of $3.8 \mathrm{kcal} / \mathrm{mol}$ between its two chair conformations $\mathbf{A}_{\text {major }}$ and $\mathbf{A}_{\text {minor }}$. Compound \mathbf{B} has an energy difference of $0.4 \mathrm{kcal} / \mathrm{mol}$ between its chair
conformations $\mathbf{B}_{\text {major }}$ and $\mathbf{B}_{\text {minor }}$.
c) (20 pts) Using the relevant data below, determine the structures of $\mathbf{A}_{\text {major }}, \mathbf{A}_{\text {minor }}, \mathbf{B}_{\text {major }}$, and $\quad \mathbf{B}_{\text {minor }}$. Place the substituents on the chair templates in their correct positions and configurations (pay attention to the equilibria), enter the energy in each box, and the designations ($\mathbf{A}_{\text {major }}, \mathbf{A}_{\text {minor }}, \mathbf{B}_{\text {major }}, \quad$ and $\mathbf{B}_{\text {minor }}$) in the circles. Values [DGo ($\mathrm{kcal} / \mathrm{mol}$)] for energy differences between axial and equatorial isomers of mono-substituted cyclohexanes are as follows: $-\mathrm{CN}, 0.2$; $-\mathrm{COOH}, 1.4 ;-\mathrm{CH} 3,1.7$; $-\mathrm{CH} 2 \mathrm{CH} 3,1.8 ;-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 2.1$; $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 5.4$.] Show work.

Compound A:

Compound B:

2. Conformation (20 pts): Draw Newman projections of the three most stable conformations of 2,3dimethylpentane viewed along the C2-C3 sigma bond. Use the circles as templates for the Newman projections. Calculate the energy ($\mathrm{kcal} / \mathrm{mol}$) of each conformation. Place your answer in the appropriate box. Show work. [H/H, eclipsed, $1.0 \mathrm{kcal} / \mathrm{mol}$; CH3/H eclipsed, $1.3 \mathrm{kcal} / \mathrm{mol}$; C2H5/H, eclipsed, $1.4 \mathrm{kcal} / \mathrm{mol}$; CH3/CH3, eclipsed, $3.0 \mathrm{kcal} / \mathrm{mol}$; CH3/CH3, gauche, $0.9 \mathrm{kcal} / \mathrm{mol}$; CH3/C2H5, gauche, $1.0 \mathrm{kcal} / \mathrm{mol}$.]

O

0

O

$\longrightarrow \square$

3. Potpourri ($6 \times 5 \mathrm{pts}=30 \mathrm{pts}$.; equal weight $)$:
a) Circle the $\mathrm{C}_{1}-\mathrm{C}_{4}$ dihedral (torsional) angle in the highest energy conformation of n -butane.
0^{0}
60°
120°
180° 270°
b) Circle the compound $\mathrm{C}_{8} \mathrm{H}_{18}$ having the most negative heat of formation and the smallest difference between its mp and $\mathrm{bp}\left(5.6^{\circ} \mathrm{C}\right)$.
n-octane 2,2,3,3-tetramethylbutane 2,2-dimethylhexane

> 2,3-dimethylhexane 2,3,4-trimethylpentane
c) Circle the acid that is ranked third in relative pKa .

$$
\mathrm{CH}_{4}
$$

$\mathrm{CH}_{3} \mathrm{OH}$
NH_{3}
$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
d) Circle the compounds that contain atoms with sp hybridization.
$\begin{array}{lllll}\text { acetylene } & \text { ethyne } & \mathrm{CO}_{2} & \mathrm{HCN} & \mathrm{BeH}_{2}\end{array}$
e) Circle the compounds with net dipole moments.
$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br} \quad$ cyclohexane $\mathrm{BrHC}=\mathrm{C}=\mathrm{CHBr}$ propane HCBr_{3}
f) Circle the species in which resonance plays a role.
$\mathrm{RCO}_{2}{ }^{-} \quad \mathrm{CH}_{3} \mathrm{ONa} \quad \mathrm{CH}_{2}=\mathrm{CHCH}_{2}{ }^{+} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \quad{ }^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$
4. Orbitals (20 pts): Provide a molecular orbital representation of acrylonitrile $\left(\mathrm{CH}_{2}=\mathrm{CHCN}\right)$.

Include pi-bonds, p-orbitals, and non-bonding electrons. Identify the hybridization of each carbon. You may use lines for sigma bonds. Provide necessary commentary.

Work Sheets
Work Sheets
Work Sheets

