Take a few moments to look over the exam. Answer each question on the exam paper.

Important clues and structures are in bold.

Do all preliminary drawing or computations on the work sheets at the end of the exam. The work sheets will not be graded.

The exam is 55 minutes.

STOP writing and hand in your exam when you are asked to do so.

REMEMBER: Neatness is to your advantage.

1. Structure/Conformation (30 pts)

2. Conformation (20 pts)

3. Potpourri (30 pts)

4. Orbitals (20 pts)

Total (100 pts)

1. **Structure/Conformation** (30 pts): Limonene, which is isolated from lemon grass, is a C_{10} hydrocarbon that contains a 6-membered ring and two double bonds.

 a) (5 pts) In addition to carbon, what other atoms are present in limonene and how many are there of each kind? Show your reasoning.
Addition of hydrogen to the double bonds of limonene (alkene \rightarrow alkane) produces two 1,4-disubstituted cyclohexane stereoisomers, **A** ($\text{C}_{10}\text{H}_{20}$) and **B**.

b) (5 pts) What is the formula of **B**? Why?

Continued …

Compound **A** has an energy difference of 3.8 kcal/mol between its two chair conformations A_{major} and A_{minor}. Compound **B** has an energy difference of 0.4 kcal/mol between its chair
conformations B_{major} and B_{minor}.

c) (20 pts) Using the relevant data below, determine the structures of $\text{A}_{\text{major}}, \text{A}_{\text{minor}}, \text{B}_{\text{major}},$ and B_{minor}. Place the substituents on the chair templates in their correct positions and configurations (pay attention to the equilibria), enter the energy in each box, and the designations ($\text{A}_{\text{major}}, \text{A}_{\text{minor}}, \text{B}_{\text{major}},$ and B_{minor}) in the circles. Values [DGo (kcal/mol)] for energy differences between axial and equatorial isomers of mono-substituted cyclohexanes are as follows: -CN, 0.2; -COOH, 1.4; -CH3, 1.7; -CH2CH3, 1.8; -CH(CH3)2, 2.1; -C(CH3)3, 5.4.] Show work.

Compound A:

![Newman projections of 2,3-dimethylpentane](image)

Compound B:

![Newman projections of 2,3-dimethylpentane](image)

2. Conformation (20 pts): Draw Newman projections of the three most stable conformations of 2,3-dimethylpentane viewed along the C2-C3 sigma bond. Use the circles as templates for the Newman projections. Calculate the energy (kcal/mol) of each conformation. Place your answer in the appropriate box. Show work. [H/H, eclipsed, 1.0 kcal/mol; CH3/H eclipsed, 1.3 kcal/mol; C2H5/H, eclipsed, 1.4 kcal/mol; CH3/CH3, eclipsed, 3.0 kcal/mol; CH3/CH3, gauche, 0.9 kcal/mol; CH3/C2H5, gauche, 1.0 kcal/mol.]
3. **Potpourri** (6 x 5 pts = 30 pts.; equal weight):

 a) **Circle** the C₁-C₄ dihedral (torsional) angle in the highest energy conformation of n-butane.

 - 0°
 - 60°
 - 120°
 - 180°
 - 270°

 b) **Circle** the compound C₈H₁₈ having the **most negative** heat of formation and the **smallest difference** between its mp and bp (5.6 °C).

 - n-octane
 - 2,2,3,3-tetramethylbutane
 - 2,2-dimethylhexane
 - 2,3-dimethylhexane
 - 2,3,4-trimethylpentane

 c) **Circle** the acid that is ranked third in relative pKa.

 - CH₄
 - CH₂OH
 - NH₃
 - NH₄⁺
 - CH₃CO₂H
d) **Circle** the compounds that contain atoms with sp hybridization.

acetylene ethyne CO₂ HCN BeH₂

e) **Circle** the compounds with net dipole moments.

BrCH₂CH₂Br cyclohexane BrHC=CHBr propane HCB₃

f) **Circle** the species in which resonance plays a role.

RCO₂⁻ CH₃ONa CH₂=CHCH₂⁺ CH₃CH₂CH₂⁺ +CH₂CH₂N(CH₃)₂

4. **Orbitals** (20 pts): Provide a molecular orbital representation of acrylonitrile (CH₂=CHCN). Include pi-bonds, p-orbitals, and non-bonding electrons. Identify the hybridization of each carbon. You may use lines for sigma bonds. Provide necessary commentary.

Work Sheets
Work Sheets
Work Sheets