FINAL EXAM
Organic Chemistry
Chemistry 220a; 2 P.M., Thursday, December 19, 2002

NAME (print):

TA: \qquad Section Day: \qquad Section Time: \qquad

Take a few moments to look over the exam. Do problems first with which you are most comfortable. Important points and unknowns are in bold type. Do all preliminary work on the worksheets. The worksheets will not be graded. The following tables are at the end of the exam: Periodic Table (page 19), BDEs (page 20), Common Isotopes (pg. 21). The exam is 2 to $2-1 / 2$ hours with an additional $1 / 2$ hour for review. STOP writing when you are asked to do so. Put your name on the cover sheet and subsequent pages where indicated.

For question 2, do 1 of 3 choices.
For question 3, do 3 of 4 .
For question 4, do 5 of 6 .
For question 5, do 4 of 6 .
For question 8 , do 4 of 5 .
REMEMBER: Neatness is to your advantage.
Have a GREAT winter break! See you next term for Chem 221b.

1. Structure/

Spectroscopy (30 pts)
2. Mechanisms (30 pts)
3. Reactions (30 pts)
4. Potpourri (30 pts)
5. Kinetics/ (32 pts.)

Thermodynamics
6. Synthesis (30 pts.) \qquad
7. Structure II (36 pts.)
8. Reactions (32 pts.) \qquad

1. (30 pts; 5 x 6 pts) Structure/Spectroscopy: The alkyl halide A, whose mass spectrum (Fig. 1) is shown below, forms a Grignard reagent \mathbf{B}. When an excess of \mathbf{B} reacts with aldehyde \mathbf{C}, compound \mathbf{D} is formed. The infrared (Fig. 2) and mass (Fig. 3) spectra of \mathbf{D} are shown below.

Fig. 1

Fig. 2

Fig. 3

a) Explain briefly how Fig. 1 reveals the structure of \mathbf{A} ?
b) What is the significance of the absorption at $\sim 3300 \mathrm{~cm}^{-1}$ in Fig. 2?
c) What is the molecular weight of \mathbf{D} ? Assume $\mathrm{z}=1$ for m / z.
d) What is the structure of \mathbf{D} ?
e) What is the structure of the ion that represents the base peak in Fig. 3?
2. (30 pts) Mechanism: Provide a mechanism (curved arrow formalism) for one the following three reactions.
a)

b)

c)

3. ($30 \mathrm{pts} ; 3 \times 10 \mathrm{pts}$) Reactions: Provide the structures in three of the following four problems. Pay attention to stereochemistry. If you do four problems, cross out the one you do not want graded.
a)

b)

c)

4. ($30 \mathrm{pts} ; 5 \times 6 \mathrm{pts}$) Potpourri: Complete five of the following six problems. If you do six problems, cross out the one you do not want graded..
a) N. Y. Times Crossword Puzzle, 41 Down. Clue: $\mathrm{C}_{4} \mathrm{H}_{8}$. (Monday, December 2, 2002)

b) The mass spectrum of chloroform, CHCl_{3}, is expected to have molecular ions at $\mathrm{M}^{+}=118,120,122$, and 124. The ions at 118 and 120 are expected to be equal in intensity even though the abundance of ${ }^{35} \mathrm{Cl}:{ }^{37} \mathrm{C}$ is $3: 1$. Show work.
c) The structure of the optically inactive, racemic dibromide derived from the free radical bromination of (R)-1-bromo-2-methylpentane. Why is it optically inactive and racemic?
d) The structure and name of the cyclohexane, $\mathrm{C}_{8} \mathrm{H}_{16}$, whose two chair conformations are achiral and equal in energy.
e) A mixture of enantiomers (20% enantiomeric excess) has a rotation $[\alpha]=-24^{\circ}$. What is the rotation of the dextrorotatory enantiomer? Show work.
f) The relationship between structures \mathbf{A} and \mathbf{B}.

5. (32 pts ; 4×8 pts) Kinetics/Thermodynamics: Complete four of the following six problems. If you do five or six problems, cross out the one you do not want graded.
a) Of cis- and trans-2-butene, the one with the greater heat of combustion. Explain briefly.
b) The tosylate that undergoes E2 elimination faster in the presence of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$. Explain briefly.

c) The compound more likely to react via $\mathrm{S}_{\mathrm{N}} 2$ substitution. Explain.

Name:
d) A nearly equal mixture of two monochloro compounds is anticipated in the free radical chlorination of 2,3-dimethylbutane. Explain and illustrate briefly. [relative rates: $1^{\circ}=1 ; 2^{\circ}=4.5 ; 3^{\circ}=5.5$]
e) The difference in energy between the two chair conformations of cyclohexane $\mathbf{1}$ is $0.6 \mathrm{kcal} / \mathrm{mol}$. Illustrate and show work. [Axial vs. equatorial for monosubstituted cyclohexanes: $\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}=2.1 \mathrm{kcal} / \mathrm{mol}$; $\mathrm{C}_{2} \mathrm{H}_{5}=1.9 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CH}_{3}=1.8 \mathrm{kcal} / \mathrm{mol} ;$ gauche butane $\left.=0.9 \mathrm{kcal} / \mathrm{mol}\right]$

f) The heat of reaction in the monochlorination of cyclohexane. Show work.
6. (30 pts) Synthesis: A student wishes to study the effect of hindered bases on E2 elimination reactions. To this end, she requires the alcohol $\mathbf{1}$. Because alcohol $\mathbf{1}$ is not available commercially, she designs and executes a synthesis of $\mathbf{1}$ using only isobutylene (2-methyl-1propene) and formaldehyde as her only sources of carbon that find their way into 1. All reagents and solvents were available to her, and to you, as you reconstruct the synthetic plan that she may have used.

1
7. (36 pts) Structure II: Compound A, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$, which has an infrared absorption at $1710 \mathrm{~cm}^{-1}$, reacts with methyl magnesium bromide to produce $\mathbf{B}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$. Compound \mathbf{B} does not react with Cr (VI) reagents but it readily reacts with $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form several compounds having the formula $\mathrm{C}_{8} \mathrm{H}_{16}$. One of these compounds \mathbf{C}, gives \mathbf{D} and \mathbf{E} upon ozonolysis and dimethylsulfide reduction. Both \mathbf{D} and \mathbf{E} have the formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$, but \mathbf{D} is oxidized to $\mathbf{F}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ with chromic acid while \mathbf{E} is inert to these conditions. \mathbf{F} is not n-butyric acid. Compound \mathbf{C} is measurably less exothermic than its geometrical isomer \mathbf{G} upon catalytic hydrogenation. [Hint: What are \mathbf{D} and \mathbf{E} ? The infrared absorption is not essential but it is helpful.]
8. ($32 \mathrm{pts} ; 4 \times 8$ pts) Reactions II: Do four of the following five problems by efficient pathways. If you do five, cross out the one you do not want graded.
a)

b)

c)

d)

e)

Work Sheets

Work Sheets

Work Sheets

Work Sheets

Periodic Table

Bond Dissociation Energies

Natural Abundance of Common Isotopes

Hydrogen
Carbon
Nitrogen

