Entering Gaussian System, Link 0=g09 Input=/Users/fredziegler/FEZDOCUMENTS/WEBSITESFOLDER/CHEMISTRY220js/STUDYAIDS/hybridization/data/cf4.gjf Output=/Users/fredziegler/FEZDOCUMENTS/WEBSITESFOLDER/CHEMISTRY220js/STUDYAIDS/hybridization/data/cf4.log Initial command: /Applications/g09/l1.exe "/Users/fredziegler/Scratch/Gau-53378.inp" -scrdir="/Users/fredziegler/Scratch/" Entering Link 1 = /Applications/g09/l1.exe PID= 53379. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64M-G09RevD.01 24-Apr-2013 17-Nov-2016 ****************************************** %chk=cf4.chk -------------------------------- # opt hf/3-21g geom=connectivity -------------------------------- 1/18=20,19=15,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; --- cf4 --- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0.6527 0.90287 0. F -0.6973 0.90289 0. F 1.10271 1.53926 1.10227 F 1.10269 -0.36993 0. F 1.10271 1.53926 -1.10227 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.35 estimate D2E/DX2 ! ! R2 R(1,3) 1.35 estimate D2E/DX2 ! ! R3 R(1,4) 1.35 estimate D2E/DX2 ! ! R4 R(1,5) 1.35 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.4712 estimate D2E/DX2 ! ! A3 A(2,1,5) 109.4712 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.4712 estimate D2E/DX2 ! ! A5 A(3,1,5) 109.4713 estimate D2E/DX2 ! ! A6 A(4,1,5) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,4,3) -120.0 estimate D2E/DX2 ! ! D2 D(2,1,5,3) 120.0 estimate D2E/DX2 ! ! D3 D(2,1,5,4) -120.0 estimate D2E/DX2 ! ! D4 D(3,1,5,4) 120.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 24 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.652701 0.902870 0.000000 2 9 0 -0.697299 0.902887 0.000000 3 9 0 1.102709 1.539260 1.102271 4 9 0 1.102686 -0.369928 0.000000 5 9 0 1.102709 1.539260 -1.102271 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 F 1.350000 0.000000 3 F 1.350000 2.204541 0.000000 4 F 1.350000 2.204541 2.204541 0.000000 5 F 1.350000 2.204541 2.204541 2.204541 0.000000 Stoichiometry CF4 Framework group TD[O(C),4C3(F)] Deg. of freedom 1 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 9 0 0.779423 -0.779423 0.779423 3 9 0 -0.779423 0.779423 0.779423 4 9 0 0.779423 0.779423 -0.779423 5 9 0 -0.779423 -0.779423 -0.779423 --------------------------------------------------------------------- Rotational constants (GHZ): 5.4734834 5.4734834 5.4734834 Standard basis: 3-21G (6D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 11 symmetry adapted cartesian basis functions of B1 symmetry. There are 11 symmetry adapted cartesian basis functions of B2 symmetry. There are 11 symmetry adapted cartesian basis functions of B3 symmetry. There are 12 symmetry adapted basis functions of A symmetry. There are 11 symmetry adapted basis functions of B1 symmetry. There are 11 symmetry adapted basis functions of B2 symmetry. There are 11 symmetry adapted basis functions of B3 symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 201.3276222146 Hartrees. NAtoms= 5 NActive= 5 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 3.02D-02 NBF= 12 11 11 11 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 12 11 11 11 ExpMin= 1.96D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) Virtual (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=1372350. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -433.293456511 A.U. after 9 cycles NFock= 9 Conv=0.18D-08 -V/T= 2.0045 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) Virtual (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -26.25947 -26.25801 -26.25801 -26.25801 -11.58135 Alpha occ. eigenvalues -- -1.79194 -1.67056 -1.67056 -1.67056 -0.98311 Alpha occ. eigenvalues -- -0.86696 -0.86696 -0.86696 -0.74124 -0.74124 Alpha occ. eigenvalues -- -0.68963 -0.68963 -0.68963 -0.67886 -0.67886 Alpha occ. eigenvalues -- -0.67886 Alpha virt. eigenvalues -- 0.37282 0.37947 0.37947 0.37947 0.85959 Alpha virt. eigenvalues -- 0.85959 0.85959 1.21465 2.02315 2.02315 Alpha virt. eigenvalues -- 2.29500 2.29500 2.29500 2.33401 2.33401 Alpha virt. eigenvalues -- 2.33401 2.34934 2.49892 2.49892 2.49892 Alpha virt. eigenvalues -- 3.92906 3.92906 3.92906 4.74815 Condensed to atoms (all electrons): 1 2 3 4 5 1 C 3.630874 0.222994 0.222994 0.222994 0.222994 2 F 0.222994 9.213100 -0.022269 -0.022269 -0.022269 3 F 0.222994 -0.022269 9.213100 -0.022269 -0.022269 4 F 0.222994 -0.022269 -0.022269 9.213100 -0.022269 5 F 0.222994 -0.022269 -0.022269 -0.022269 9.213100 Mulliken charges: 1 1 C 1.477150 2 F -0.369288 3 F -0.369288 4 F -0.369288 5 F -0.369288 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 1.477150 2 F -0.369288 3 F -0.369288 4 F -0.369288 5 F -0.369288 Electronic spatial extent (au): = 291.9138 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -25.8319 YY= -25.8319 ZZ= -25.8319 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 2.6829 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -80.9456 YYYY= -80.9456 ZZZZ= -80.9456 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -28.0212 XXZZ= -28.0212 YYZZ= -28.0212 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.013276222146D+02 E-N=-1.435417545238D+03 KE= 4.313562987105D+02 Symmetry A KE= 1.307357409874D+02 Symmetry B1 KE= 1.002068525743D+02 Symmetry B2 KE= 1.002068525743D+02 Symmetry B3 KE= 1.002068525743D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 0.000000000 2 9 0.029380646 -0.000000367 0.000000003 3 9 -0.009793719 -0.013850044 -0.023989200 4 9 -0.009793203 0.027700461 0.000000003 5 9 -0.009793724 -0.013850051 0.023989194 ------------------------------------------------------------------- Cartesian Forces: Max 0.029380646 RMS 0.015172100 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.029380646 RMS 0.015704616 Search for a local minimum. Step number 1 out of a maximum of 24 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 R4 A1 R1 0.55021 R2 0.00000 0.55021 R3 0.00000 0.00000 0.55021 R4 0.00000 0.00000 0.00000 0.55021 A1 0.00000 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A2 A3 A4 A5 A6 A2 0.25000 A3 0.00000 0.25000 A4 0.00000 0.00000 0.25000 A5 0.00000 0.00000 0.00000 0.25000 A6 0.00000 0.00000 0.00000 0.00000 0.25000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 D1 D2 D3 D4 D1 0.02089 D2 0.00000 0.02089 D3 0.00000 0.00000 0.02089 D4 0.00000 0.00000 0.00000 0.02089 ITU= 0 Eigenvalues --- 0.09138 0.10058 0.14308 0.25000 0.25000 Eigenvalues --- 0.55021 0.55021 0.55021 0.55021 RFO step: Lambda=-6.20556288D-03 EMin= 9.13821571D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.02822443 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.63D-13 for atom 5. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.55113 -0.02938 0.00000 -0.05280 -0.05280 2.49833 R2 2.55113 -0.02938 0.00000 -0.05280 -0.05280 2.49833 R3 2.55113 -0.02938 0.00000 -0.05280 -0.05280 2.49833 R4 2.55113 -0.02938 0.00000 -0.05280 -0.05280 2.49833 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 -2.09440 0.00000 0.00000 0.00000 0.00000 -2.09440 D2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D3 -2.09440 0.00000 0.00000 0.00000 0.00000 -2.09440 D4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 Item Value Threshold Converged? Maximum Force 0.029381 0.000450 NO RMS Force 0.015705 0.000300 NO Maximum Displacement 0.052803 0.001800 NO RMS Displacement 0.028224 0.001200 NO Predicted change in Energy=-3.137381D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.652701 0.902870 0.000000 2 9 0 -0.669357 0.902886 0.000000 3 9 0 1.093395 1.526088 1.079456 4 9 0 1.093371 -0.343584 0.000000 5 9 0 1.093395 1.526089 -1.079456 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 F 1.322058 0.000000 3 F 1.322058 2.158911 0.000000 4 F 1.322058 2.158911 2.158911 0.000000 5 F 1.322058 2.158911 2.158911 2.158911 0.000000 Stoichiometry CF4 Framework group TD[O(C),4C3(F)] Deg. of freedom 1 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 9 0 0.763290 0.763290 0.763290 3 9 0 -0.763290 -0.763290 0.763290 4 9 0 -0.763290 0.763290 -0.763290 5 9 0 0.763290 -0.763290 -0.763290 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7072967 5.7072967 5.7072967 Standard basis: 3-21G (6D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 11 symmetry adapted cartesian basis functions of B1 symmetry. There are 11 symmetry adapted cartesian basis functions of B2 symmetry. There are 11 symmetry adapted cartesian basis functions of B3 symmetry. There are 12 symmetry adapted basis functions of A symmetry. There are 11 symmetry adapted basis functions of B1 symmetry. There are 11 symmetry adapted basis functions of B2 symmetry. There are 11 symmetry adapted basis functions of B3 symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 205.5827564798 Hartrees. NAtoms= 5 NActive= 5 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 2.80D-02 NBF= 12 11 11 11 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 12 11 11 11 Initial guess from the checkpoint file: "cf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.707107 0.000000 0.000000 -0.707107 Ang= -90.00 deg. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) Virtual (A1) (A1) (A1) (A1) (E) (E) (T2) (T2) (T2) (T1) (T2) (T2) (T2) (T2) (T2) (T1) (T2) (T2) (T2) (T2) (T2) (T1) (T2) (T2) ExpMin= 1.96D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1372530. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -433.296274104 A.U. after 8 cycles NFock= 8 Conv=0.45D-08 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 0.000000000 2 9 -0.003784790 0.000000047 0.000000000 3 9 0.001261619 0.001784151 0.003090269 4 9 0.001261552 -0.003568350 0.000000000 5 9 0.001261619 0.001784152 -0.003090268 ------------------------------------------------------------------- Cartesian Forces: Max 0.003784790 RMS 0.001954457 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003784790 RMS 0.002023055 Search for a local minimum. Step number 2 out of a maximum of 24 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -2.82D-03 DEPred=-3.14D-03 R= 8.98D-01 TightC=F SS= 1.41D+00 RLast= 1.06D-01 DXNew= 5.0454D-01 3.1682D-01 Trust test= 8.98D-01 RLast= 1.06D-01 DXMaxT set to 3.17D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.56968 R2 0.01947 0.56968 R3 0.01947 0.01947 0.56968 R4 0.01947 0.01947 0.01947 0.56968 A1 0.00000 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A2 A3 A4 A5 A6 A2 0.25000 A3 0.00000 0.25000 A4 0.00000 0.00000 0.25000 A5 0.00000 0.00000 0.00000 0.25000 A6 0.00000 0.00000 0.00000 0.00000 0.25000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 D1 D2 D3 D4 D1 0.02089 D2 0.00000 0.02089 D3 0.00000 0.00000 0.02089 D4 0.00000 0.00000 0.00000 0.02089 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.09138 0.10058 0.14308 0.25000 0.25000 Eigenvalues --- 0.55021 0.55021 0.55021 0.62810 RFO step: Lambda= 0.00000000D+00 EMin= 9.13821571D-02 Quartic linear search produced a step of -0.10480. Iteration 1 RMS(Cart)= 0.00295785 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.15D-14 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.49833 0.00378 0.00553 0.00000 0.00553 2.50386 R2 2.49833 0.00378 0.00553 0.00000 0.00553 2.50386 R3 2.49833 0.00378 0.00553 0.00000 0.00553 2.50386 R4 2.49833 0.00378 0.00553 0.00000 0.00553 2.50386 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 -2.09440 0.00000 0.00000 0.00000 0.00000 -2.09440 D2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D3 -2.09440 0.00000 0.00000 0.00000 0.00000 -2.09440 D4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 Item Value Threshold Converged? Maximum Force 0.003785 0.000450 NO RMS Force 0.002023 0.000300 NO Maximum Displacement 0.005534 0.001800 NO RMS Displacement 0.002958 0.001200 NO Predicted change in Energy=-4.530855D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.652701 0.902870 0.000000 2 9 0 -0.672285 0.902886 0.000000 3 9 0 1.094371 1.527469 1.081847 4 9 0 1.094348 -0.346345 0.000000 5 9 0 1.094371 1.527469 -1.081846 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 F 1.324986 0.000000 3 F 1.324986 2.163693 0.000000 4 F 1.324986 2.163693 2.163693 0.000000 5 F 1.324986 2.163693 2.163693 2.163693 0.000000 Stoichiometry CF4 Framework group TD[O(C),4C3(F)] Deg. of freedom 1 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 9 0 0.764981 0.764981 0.764981 3 9 0 -0.764981 -0.764981 0.764981 4 9 0 -0.764981 0.764981 -0.764981 5 9 0 0.764981 -0.764981 -0.764981 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6820978 5.6820978 5.6820978 Standard basis: 3-21G (6D, 7F) There are 12 symmetry adapted cartesian basis functions of A symmetry. There are 11 symmetry adapted cartesian basis functions of B1 symmetry. There are 11 symmetry adapted cartesian basis functions of B2 symmetry. There are 11 symmetry adapted cartesian basis functions of B3 symmetry. There are 12 symmetry adapted basis functions of A symmetry. There are 11 symmetry adapted basis functions of B1 symmetry. There are 11 symmetry adapted basis functions of B2 symmetry. There are 11 symmetry adapted basis functions of B3 symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 205.1284099545 Hartrees. NAtoms= 5 NActive= 5 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 2.82D-02 NBF= 12 11 11 11 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 12 11 11 11 Initial guess from the checkpoint file: "cf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) Virtual (A1) (A1) (A1) (A1) (E) (E) (T2) (T2) (T2) (T1) (T2) (T2) (T2) (T2) (T2) (T1) (T2) (T2) (T2) (T2) (T2) (T1) (T2) (T2) Keep R1 ints in memory in symmetry-blocked form, NReq=1372530. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -433.296315821 A.U. after 7 cycles NFock= 7 Conv=0.92D-08 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 0.000000000 2 9 0.000002638 0.000000000 0.000000000 3 9 -0.000000879 -0.000001244 -0.000002154 4 9 -0.000000879 0.000002487 0.000000000 5 9 -0.000000879 -0.000001244 0.000002154 ------------------------------------------------------------------- Cartesian Forces: Max 0.000002638 RMS 0.000001362 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000002638 RMS 0.000001410 Search for a local minimum. Step number 3 out of a maximum of 24 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 DE= -4.17D-05 DEPred=-4.53D-05 R= 9.21D-01 TightC=F SS= 1.41D+00 RLast= 1.11D-02 DXNew= 5.3282D-01 3.3202D-02 Trust test= 9.21D-01 RLast= 1.11D-02 DXMaxT set to 3.17D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.58377 R2 0.03356 0.58377 R3 0.03356 0.03356 0.58377 R4 0.03356 0.03356 0.03356 0.58377 A1 0.00000 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 A2 A3 A4 A5 A6 A2 0.25000 A3 0.00000 0.25000 A4 0.00000 0.00000 0.25000 A5 0.00000 0.00000 0.00000 0.25000 A6 0.00000 0.00000 0.00000 0.00000 0.25000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 D1 D2 D3 D4 D1 0.02089 D2 0.00000 0.02089 D3 0.00000 0.00000 0.02089 D4 0.00000 0.00000 0.00000 0.02089 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.09138 0.10058 0.14308 0.25000 0.25000 Eigenvalues --- 0.55021 0.55021 0.55021 0.68444 RFO step: Lambda= 0.00000000D+00 EMin= 9.13821571D-02 Quartic linear search produced a step of -0.00070. Iteration 1 RMS(Cart)= 0.00000208 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.68D-13 for atom 5. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50386 0.00000 0.00000 0.00000 0.00000 2.50386 R2 2.50386 0.00000 0.00000 0.00000 0.00000 2.50386 R3 2.50386 0.00000 0.00000 0.00000 0.00000 2.50386 R4 2.50386 0.00000 0.00000 0.00000 0.00000 2.50386 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 -2.09440 0.00000 0.00000 0.00000 0.00000 -2.09440 D2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D3 -2.09440 0.00000 0.00000 0.00000 0.00000 -2.09440 D4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 Item Value Threshold Converged? Maximum Force 0.000003 0.000450 YES RMS Force 0.000001 0.000300 YES Maximum Displacement 0.000004 0.001800 YES RMS Displacement 0.000002 0.001200 YES Predicted change in Energy=-2.033182D-11 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.325 -DE/DX = 0.0 ! ! R2 R(1,3) 1.325 -DE/DX = 0.0 ! ! R3 R(1,4) 1.325 -DE/DX = 0.0 ! ! R4 R(1,5) 1.325 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.4712 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.4712 -DE/DX = 0.0 ! ! A3 A(2,1,5) 109.4712 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.4712 -DE/DX = 0.0 ! ! A5 A(3,1,5) 109.4712 -DE/DX = 0.0 ! ! A6 A(4,1,5) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) -120.0 -DE/DX = 0.0 ! ! D2 D(2,1,5,3) 120.0 -DE/DX = 0.0 ! ! D3 D(2,1,5,4) -120.0 -DE/DX = 0.0 ! ! D4 D(3,1,5,4) 120.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.652701 0.902870 0.000000 2 9 0 -0.672285 0.902886 0.000000 3 9 0 1.094371 1.527469 1.081847 4 9 0 1.094348 -0.346345 0.000000 5 9 0 1.094371 1.527469 -1.081846 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 F 1.324986 0.000000 3 F 1.324986 2.163693 0.000000 4 F 1.324986 2.163693 2.163693 0.000000 5 F 1.324986 2.163693 2.163693 2.163693 0.000000 Stoichiometry CF4 Framework group TD[O(C),4C3(F)] Deg. of freedom 1 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 9 0 0.764981 0.764981 0.764981 3 9 0 -0.764981 -0.764981 0.764981 4 9 0 -0.764981 0.764981 -0.764981 5 9 0 0.764981 -0.764981 -0.764981 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6820978 5.6820978 5.6820978 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) Virtual (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -26.25852 -26.25700 -26.25700 -26.25700 -11.57529 Alpha occ. eigenvalues -- -1.81247 -1.67996 -1.67996 -1.67996 -0.98645 Alpha occ. eigenvalues -- -0.87894 -0.87894 -0.87894 -0.74692 -0.74692 Alpha occ. eigenvalues -- -0.69352 -0.69352 -0.69352 -0.67807 -0.67807 Alpha occ. eigenvalues -- -0.67807 Alpha virt. eigenvalues -- 0.40833 0.40833 0.40833 0.41643 0.86073 Alpha virt. eigenvalues -- 0.86073 0.86073 1.19527 2.01799 2.01799 Alpha virt. eigenvalues -- 2.30901 2.30901 2.30901 2.32466 2.32466 Alpha virt. eigenvalues -- 2.32466 2.33529 2.52177 2.52177 2.52177 Alpha virt. eigenvalues -- 3.96932 3.96932 3.96932 4.80427 Condensed to atoms (all electrons): 1 2 3 4 5 1 C 3.579984 0.226571 0.226571 0.226571 0.226571 2 F 0.226571 9.228699 -0.025613 -0.025613 -0.025613 3 F 0.226571 -0.025613 9.228699 -0.025613 -0.025613 4 F 0.226571 -0.025613 -0.025613 9.228699 -0.025613 5 F 0.226571 -0.025613 -0.025613 -0.025613 9.228699 Mulliken charges: 1 1 C 1.513730 2 F -0.378433 3 F -0.378433 4 F -0.378433 5 F -0.378433 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 1.513730 2 F -0.378433 3 F -0.378433 4 F -0.378433 5 F -0.378433 Electronic spatial extent (au): = 283.0874 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -25.7313 YY= -25.7313 ZZ= -25.7313 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= -2.6479 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -78.3614 YYYY= -78.3614 ZZZZ= -78.3614 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -27.1423 XXZZ= -27.1423 YYZZ= -27.1423 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.051284099545D+02 E-N=-1.443113629831D+03 KE= 4.316423218617D+02 Symmetry A KE= 1.307601433714D+02 Symmetry B1 KE= 1.002940594968D+02 Symmetry B2 KE= 1.002940594968D+02 Symmetry B3 KE= 1.002940594968D+02 1\1\GINC-FREDZIEGLER\FOpt\RHF\3-21G\C1F4\FREDZIEGLER\17-Nov-2016\0\\# opt hf/3-21g geom=connectivity\\cf4\\0,1\C,0.6527011079,0.90286984,0.\ F,-0.6722850101,0.9028863777,-0.0000001368\F,1.0943708314,1.5274686127 ,1.0818467736\F,1.0943475553,-0.3463445646,-0.00000014\F,1.0943710549, 1.5274689342,-1.0818464968\\Version=EM64M-G09RevD.01\State=1-A1\HF=-43 3.2963158\RMSD=9.150e-09\RMSF=1.362e-06\Dipole=0.,0.,0.\Quadrupole=0., 0.,0.,0.,0.,0.\PG=TD [O(C1),4C3(F1)]\\@ THE POLHOLDE ROLLS WITHOUT SLIPPING ON THE HERPOLHOLDE LYING IN THE INVARIABLE PLANE. H.GOLDSTEIN, "CLASSICAL MECHANICS", PG 161 Job cpu time: 0 days 0 hours 0 minutes 2.2 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Thu Nov 17 19:16:43 2016.