Entering Gaussian System, Link 0=g09 Input=/Users/fredziegler/FEZDOCUMENTS/WEBSITESFOLDER/CHEMISTRY220js/STUDYAIDS/hybridization/data/bf4.gjf Output=/Users/fredziegler/FEZDOCUMENTS/WEBSITESFOLDER/CHEMISTRY220js/STUDYAIDS/hybridization/data/bf4.log Initial command: /Applications/g09/l1.exe "/Users/fredziegler/Scratch/Gau-52572.inp" -scrdir="/Users/fredziegler/Scratch/" Entering Link 1 = /Applications/g09/l1.exe PID= 52573. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64M-G09RevD.01 24-Apr-2013 27-Feb-2017 ****************************************** %chk=bf4.chk -------------------------------- # opt hf/3-21g geom=connectivity -------------------------------- 1/18=20,19=15,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; --- BF4 --- Symbolic Z-matrix: Charge = -1 Multiplicity = 1 F 2.10684 2.12301 -0.17763 F -1.93623 3.07742 0.52143 F 0.63205 -1.10553 -0.53442 F -2.93229 -0.30771 0.46957 B -0.40212 1.00902 0.01321 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,5) 2.7518 estimate D2E/DX2 ! ! R2 R(2,5) 2.6249 estimate D2E/DX2 ! ! R3 R(3,5) 2.4168 estimate D2E/DX2 ! ! R4 R(4,5) 2.8886 estimate D2E/DX2 ! ! A1 A(1,5,2) 103.1384 estimate D2E/DX2 ! ! A2 A(1,5,3) 87.0382 estimate D2E/DX2 ! ! A3 A(2,5,4) 79.4368 estimate D2E/DX2 ! ! A4 A(3,5,4) 90.6751 estimate D2E/DX2 ! ! A5 L(1,5,4,3,-1) 177.7133 estimate D2E/DX2 ! ! A6 L(2,5,3,4,-1) 170.1119 estimate D2E/DX2 ! ! A7 L(1,5,4,3,-2) 174.2208 estimate D2E/DX2 ! ! A8 L(2,5,3,4,-2) 176.6096 estimate D2E/DX2 ! ! D1 D(1,5,3,2) -167.0779 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 23 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.106838 2.123009 -0.177631 2 9 0 -1.936235 3.077416 0.521434 3 9 0 0.632048 -1.105528 -0.534419 4 9 0 -2.932289 -0.307714 0.469572 5 5 0 -0.402124 1.009018 0.013209 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 4.212602 0.000000 3 F 3.567317 5.020749 0.000000 4 F 5.632059 3.529011 3.788009 0.000000 5 B 2.751779 2.624892 2.416757 2.888561 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.725777 0.930247 0.101503 2 9 0 -1.265665 2.263388 -0.091223 3 9 0 1.030159 -2.201698 -0.102336 4 9 0 -2.560285 -1.013342 0.111048 5 5 0 0.126025 0.038528 -0.034184 --------------------------------------------------------------------- Rotational constants (GHZ): 2.2343401 1.5929427 0.9326943 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 97.6227924655 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 1.79D-01 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1367349. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -419.504128647 A.U. after 27 cycles NFock= 27 Conv=0.86D-08 -V/T= 2.0038 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -25.92837 -25.92310 -25.89486 -25.89416 -7.74850 Alpha occ. eigenvalues -- -1.26457 -1.26331 -1.23969 -1.23696 -0.44752 Alpha occ. eigenvalues -- -0.39054 -0.38984 -0.38561 -0.38521 -0.36428 Alpha occ. eigenvalues -- -0.36396 -0.36273 -0.36200 -0.27245 -0.23135 Alpha occ. eigenvalues -- -0.21273 Alpha virt. eigenvalues -- -0.03340 0.13531 0.17605 0.20673 0.69964 Alpha virt. eigenvalues -- 0.77317 0.80755 0.91162 2.43600 2.43735 Alpha virt. eigenvalues -- 2.44466 2.44739 2.46088 2.46116 2.46363 Alpha virt. eigenvalues -- 2.46803 2.47184 2.54310 2.55829 2.57941 Alpha virt. eigenvalues -- 3.51633 3.58483 3.61657 3.69944 Condensed to atoms (all electrons): 1 2 3 4 5 1 F 9.327438 -0.000001 -0.000040 0.000000 0.065929 2 F -0.000001 9.269602 0.000000 -0.000051 0.067437 3 F -0.000040 0.000000 9.275162 -0.000012 0.087244 4 F 0.000000 -0.000051 -0.000012 9.329675 0.048652 5 B 0.065929 0.067437 0.087244 0.048652 4.259806 Mulliken charges: 1 1 F -0.393326 2 F -0.336988 3 F -0.362353 4 F -0.378265 5 B 0.470932 Sum of Mulliken charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 F -0.393326 2 F -0.336988 3 F -0.362353 4 F -0.378265 5 B 0.470932 Electronic spatial extent (au): = 1013.1038 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.1586 Y= 0.2112 Z= -0.1695 Tot= 0.3139 Quadrupole moment (field-independent basis, Debye-Ang): XX= -56.8607 YY= -46.6198 ZZ= -24.4592 XY= -0.7697 XZ= -0.0382 YZ= -0.0497 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -14.2142 YY= -3.9732 ZZ= 18.1874 XY= -0.7697 XZ= -0.0382 YZ= -0.0497 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -8.6225 YYY= -0.6405 ZZZ= 0.2035 XYY= 1.2463 XXY= -2.9499 XXZ= -2.0585 XZZ= -0.3049 YZZ= -0.1193 YYZ= 1.3815 XYZ= -1.7878 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -667.9780 YYYY= -434.4855 ZZZZ= -17.1852 XXXY= -49.1529 XXXZ= -0.5571 YYYX= 26.9824 YYYZ= -0.1041 ZZZX= 0.0077 ZZZY= -0.0161 XXYY= -183.9221 XXZZ= -87.1383 YYZZ= -63.5469 XXYZ= 0.0530 YYXZ= 0.0080 ZZXY= -0.1372 N-N= 9.762279246549D+01 E-N=-1.211052110265D+03 KE= 4.179217191886D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.048702407 -0.019313158 0.004159983 2 9 0.032623426 -0.041076839 -0.011019703 3 9 -0.031024956 0.061247696 0.015386899 4 9 0.037062038 0.018921308 -0.006530349 5 5 0.010041898 -0.019779007 -0.001996830 ------------------------------------------------------------------- Cartesian Forces: Max 0.061247696 RMS 0.029275853 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.070351521 RMS 0.030892211 Search for a local minimum. Step number 1 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 R4 A1 R1 0.02488 R2 0.00000 0.02979 R3 0.00000 0.00000 0.04107 R4 0.00000 0.00000 0.00000 0.02073 A1 0.00000 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 A7 0.00000 0.00000 0.00000 0.00000 0.00000 A8 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A2 A3 A4 A5 A6 A2 0.25000 A3 0.00000 0.25000 A4 0.00000 0.00000 0.25000 A5 0.00000 0.00000 0.00000 0.00230 A6 0.00000 0.00000 0.00000 0.00000 0.00230 A7 0.00000 0.00000 0.00000 0.00000 0.00000 A8 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A7 A8 D1 A7 0.00230 A8 0.00000 0.00230 D1 0.00000 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00230 0.00253 0.02073 0.02488 0.02979 Eigenvalues --- 0.04107 0.12107 0.12628 0.24999 RFO step: Lambda=-9.66360914D-02 EMin= 2.30000000D-03 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.345 Iteration 1 RMS(Cart)= 0.08309815 RMS(Int)= 0.00007925 Iteration 2 RMS(Cart)= 0.00017461 RMS(Int)= 0.00000154 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000154 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 5.20011 -0.05251 0.00000 -0.14902 -0.14902 5.05108 R2 4.96033 -0.05357 0.00000 -0.14612 -0.14612 4.81421 R3 4.56701 -0.07035 0.00000 -0.17618 -0.17618 4.39083 R4 5.45859 -0.04212 0.00000 -0.12377 -0.12377 5.33482 A1 1.80010 -0.00482 0.00000 -0.00565 -0.00565 1.79445 A2 1.51910 0.00405 0.00000 0.00451 0.00451 1.52361 A3 1.38643 0.00241 0.00000 0.00200 0.00200 1.38843 A4 1.58258 -0.00161 0.00000 -0.00066 -0.00067 1.58191 A5 3.10168 0.00244 0.00000 0.00384 0.00384 3.10552 A6 2.96901 0.00081 0.00000 0.00134 0.00133 2.97035 A7 3.04073 -0.00089 0.00000 -0.00316 -0.00316 3.03756 A8 3.08242 0.00003 0.00000 -0.00048 -0.00047 3.08195 D1 -2.91606 0.00051 0.00000 0.00173 0.00173 -2.91433 Item Value Threshold Converged? Maximum Force 0.070352 0.000450 NO RMS Force 0.030892 0.000300 NO Maximum Displacement 0.140854 0.001800 NO RMS Displacement 0.083098 0.001200 NO Predicted change in Energy=-3.192841D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.034063 2.092370 -0.168396 2 9 0 -1.884262 3.014482 0.503652 3 9 0 0.591369 -1.030991 -0.515718 4 9 0 -2.872644 -0.282876 0.461662 5 5 0 -0.400288 1.003216 0.010966 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 4.081079 0.000000 3 F 3.457945 4.851156 0.000000 4 F 5.487672 3.442562 3.676185 0.000000 5 B 2.672918 2.547569 2.323527 2.823066 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.669983 0.845307 0.101657 2 9 0 -1.167231 2.221582 -0.090335 3 9 0 0.945792 -2.145192 -0.101965 4 9 0 -2.519939 -0.937717 0.110282 5 5 0 0.128509 0.028834 -0.035350 --------------------------------------------------------------------- Rotational constants (GHZ): 2.3807571 1.6849812 0.9897346 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 100.5959380836 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 1.70D-01 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999935 -0.000178 0.000097 0.011388 Ang= -1.31 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1367377. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -419.539580103 A.U. after 19 cycles NFock= 19 Conv=0.64D-08 -V/T= 2.0041 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.054736285 -0.021749728 0.004587673 2 9 0.036900639 -0.046007314 -0.012503202 3 9 -0.035285539 0.069858334 0.017451751 4 9 0.041656091 0.020950636 -0.007413200 5 5 0.011465093 -0.023051928 -0.002123022 ------------------------------------------------------------------- Cartesian Forces: Max 0.069858334 RMS 0.033117065 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.080175105 RMS 0.034919091 Search for a local minimum. Step number 2 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.55D-02 DEPred=-3.19D-02 R= 1.11D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0001D-01 Trust test= 1.11D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.01015 R2 -0.01582 0.01272 R3 -0.02441 -0.02644 -0.00001 R4 -0.01107 -0.01185 -0.01822 0.01238 A1 -0.00353 -0.00389 -0.00615 -0.00259 0.24901 A2 0.00238 0.00266 0.00425 0.00172 0.00072 A3 0.00227 0.00243 0.00372 0.00172 0.00052 A4 -0.00106 -0.00111 -0.00169 -0.00081 -0.00022 A5 0.00006 0.00006 0.00010 0.00005 0.00001 A6 0.00078 0.00080 0.00118 0.00061 0.00013 A7 -0.00043 -0.00044 -0.00065 -0.00033 -0.00007 A8 0.00017 0.00017 0.00026 0.00013 0.00003 D1 0.00022 0.00023 0.00034 0.00017 0.00004 A2 A3 A4 A5 A6 A2 0.24947 A3 -0.00035 0.24965 A4 0.00014 0.00017 0.24992 A5 -0.00001 -0.00001 0.00000 0.00230 A6 -0.00007 -0.00013 0.00007 0.00000 0.00224 A7 0.00004 0.00007 -0.00004 0.00000 0.00003 A8 -0.00001 -0.00003 0.00001 0.00000 -0.00001 D1 -0.00002 -0.00004 0.00002 0.00000 -0.00002 A7 A8 D1 A7 0.00228 A8 0.00001 0.00230 D1 0.00001 0.00000 0.00230 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.04852 0.00230 0.00254 0.02169 0.02693 Eigenvalues --- 0.03461 0.12086 0.12615 0.24885 RFO step: Lambda=-1.52431625D-01 EMin=-4.85180492D-02 Skip linear search -- no minimum in search direction. Maximum step size ( 0.505) exceeded in Quadratic search. -- Step size scaled by 0.504 Iteration 1 RMS(Cart)= 0.11062057 RMS(Int)= 0.03728846 Iteration 2 RMS(Cart)= 0.03568444 RMS(Int)= 0.00001428 Iteration 3 RMS(Cart)= 0.00000539 RMS(Int)= 0.00001289 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001289 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 5.05108 -0.05902 0.00000 -0.23675 -0.23675 4.81433 R2 4.81421 -0.06023 0.00000 -0.24094 -0.24094 4.57326 R3 4.39083 -0.08018 0.00000 -0.32250 -0.32250 4.06833 R4 5.33482 -0.04721 0.00000 -0.18897 -0.18897 5.14585 A1 1.79445 -0.00592 0.00000 -0.01798 -0.01798 1.77647 A2 1.52361 0.00464 0.00000 0.01209 0.01209 1.53570 A3 1.38843 0.00348 0.00000 0.01094 0.01094 1.39937 A4 1.58191 -0.00216 0.00000 -0.00485 -0.00485 1.57706 A5 3.10552 0.00248 0.00000 0.00725 0.00724 3.11277 A6 2.97035 0.00132 0.00000 0.00610 0.00609 2.97643 A7 3.03756 -0.00116 0.00000 -0.00553 -0.00554 3.03202 A8 3.08195 0.00014 0.00000 0.00058 0.00062 3.08257 D1 -2.91433 0.00066 0.00000 0.00298 0.00298 -2.91134 Item Value Threshold Converged? Maximum Force 0.080175 0.000450 NO RMS Force 0.034919 0.000300 NO Maximum Displacement 0.250028 0.001800 NO RMS Displacement 0.139875 0.001200 NO Predicted change in Energy=-6.968133D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.915939 2.046137 -0.153629 2 9 0 -1.788041 2.914005 0.473146 3 9 0 0.515390 -0.898682 -0.480621 4 9 0 -2.778210 -0.254965 0.447406 5 5 0 -0.396841 0.989705 0.005863 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 3.855582 0.000000 3 F 3.277258 4.555441 0.000000 4 F 5.262257 3.320161 3.481868 0.000000 5 B 2.547633 2.420066 2.152867 2.723065 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.590565 0.658017 0.101696 2 9 0 -0.951761 2.168504 -0.087678 3 9 0 0.760282 -2.052962 -0.100967 4 9 0 -2.472397 -0.776457 0.108130 5 5 0 0.131960 0.005216 -0.038125 --------------------------------------------------------------------- Rotational constants (GHZ): 2.6617874 1.8526397 1.0960185 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 105.9642836992 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 1.55D-01 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999554 -0.000528 0.000220 0.029850 Ang= -3.42 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1367486. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -419.609900026 A.U. after 19 cycles NFock= 19 Conv=0.36D-08 -V/T= 2.0046 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.065080804 -0.026101842 0.005246543 2 9 0.044515087 -0.055542550 -0.015326245 3 9 -0.043941377 0.087714395 0.021582694 4 9 0.049216871 0.024478429 -0.008879270 5 5 0.015290224 -0.030548432 -0.002623721 ------------------------------------------------------------------- Cartesian Forces: Max 0.087714395 RMS 0.040505551 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.100434916 RMS 0.042564381 Search for a local minimum. Step number 3 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -7.03D-02 DEPred=-6.97D-02 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 5.05D-01 DXNew= 8.4853D-01 1.5136D+00 Trust test= 1.01D+00 RLast= 5.05D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.01181 R2 -0.01511 0.01238 R3 -0.02604 -0.02980 -0.00932 R4 -0.00942 -0.01091 -0.01890 0.01394 A1 -0.00528 -0.00583 -0.00924 -0.00392 0.24874 A2 0.00340 0.00378 0.00605 0.00250 0.00088 A3 0.00366 0.00397 0.00620 0.00277 0.00075 A4 -0.00173 -0.00187 -0.00292 -0.00132 -0.00034 A5 0.00025 0.00028 0.00046 0.00019 0.00005 A6 0.00061 0.00070 0.00122 0.00045 0.00026 A7 -0.00040 -0.00045 -0.00079 -0.00030 -0.00015 A8 0.00013 0.00015 0.00026 0.00010 0.00006 D1 0.00021 0.00024 0.00041 0.00015 0.00008 A2 A3 A4 A5 A6 A2 0.24937 A3 -0.00048 0.24945 A4 0.00021 0.00027 0.24987 A5 -0.00003 -0.00004 0.00002 0.00229 A6 -0.00014 -0.00023 0.00011 -0.00002 0.00225 A7 0.00009 0.00013 -0.00007 0.00001 0.00003 A8 -0.00003 -0.00005 0.00002 0.00000 -0.00001 D1 -0.00004 -0.00007 0.00003 -0.00001 -0.00001 A7 A8 D1 A7 0.00228 A8 0.00001 0.00230 D1 0.00001 0.00000 0.00230 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.05519 0.00230 0.00254 0.02166 0.02686 Eigenvalues --- 0.03435 0.12062 0.12619 0.24883 RFO step: Lambda=-1.83384070D-01 EMin=-5.51887054D-02 Skip linear search -- no minimum in search direction. Maximum step size ( 0.849) exceeded in Quadratic search. -- Step size scaled by 0.848 Iteration 1 RMS(Cart)= 0.11631197 RMS(Int)= 0.12954708 Iteration 2 RMS(Cart)= 0.09720411 RMS(Int)= 0.04625941 Iteration 3 RMS(Cart)= 0.04138219 RMS(Int)= 0.00006680 Iteration 4 RMS(Cart)= 0.00002097 RMS(Int)= 0.00005062 Iteration 5 RMS(Cart)= 0.00000001 RMS(Int)= 0.00005062 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.81433 -0.07023 0.00000 -0.38168 -0.38168 4.43265 R2 4.57326 -0.07271 0.00000 -0.39953 -0.39953 4.17374 R3 4.06833 -0.10043 0.00000 -0.56665 -0.56665 3.50168 R4 5.14585 -0.05567 0.00000 -0.30020 -0.30020 4.84565 A1 1.77647 -0.00784 0.00000 -0.03890 -0.03890 1.73757 A2 1.53570 0.00578 0.00000 0.02603 0.02603 1.56174 A3 1.39937 0.00512 0.00000 0.02592 0.02589 1.42526 A4 1.57706 -0.00301 0.00000 -0.01275 -0.01276 1.56430 A5 3.11277 0.00277 0.00000 0.01328 0.01327 3.12604 A6 2.97643 0.00211 0.00000 0.01317 0.01313 2.98957 A7 3.03202 -0.00167 0.00000 -0.01029 -0.01032 3.02170 A8 3.08257 0.00032 0.00000 0.00197 0.00214 3.08470 D1 -2.91134 0.00092 0.00000 0.00554 0.00557 -2.90577 Item Value Threshold Converged? Maximum Force 0.100435 0.000450 NO RMS Force 0.042564 0.000300 NO Maximum Displacement 0.434936 0.001800 NO RMS Displacement 0.235468 0.001200 NO Predicted change in Energy=-1.499953D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.724040 1.971680 -0.129938 2 9 0 -1.621678 2.747996 0.421226 3 9 0 0.381259 -0.668524 -0.418515 4 9 0 -2.624898 -0.219193 0.423026 5 5 0 -0.390486 0.964241 -0.003634 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 3.478545 0.000000 3 F 2.976074 4.048398 0.000000 4 F 4.900914 3.132198 3.153898 0.000000 5 B 2.345657 2.208647 1.853008 2.564206 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.441400 0.343880 0.101695 2 9 0 -0.584965 2.049044 -0.082169 3 9 0 0.455303 -1.863381 -0.099386 4 9 0 -2.384997 -0.507498 0.103948 5 5 0 0.131866 -0.039680 -0.043360 --------------------------------------------------------------------- Rotational constants (GHZ): 3.2896308 2.1720406 1.3132667 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 116.4052514343 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 1.33D-01 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998428 -0.001252 0.000491 0.056033 Ang= -6.43 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1367829. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -419.761244462 A.U. after 18 cycles NFock= 18 Conv=0.53D-08 -V/T= 2.0052 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.081190706 -0.032993114 0.006068340 2 9 0.058118648 -0.074883852 -0.020863180 3 9 -0.060023989 0.121511539 0.028880022 4 9 0.059280209 0.029753660 -0.010891513 5 5 0.023815839 -0.043388233 -0.003193668 ------------------------------------------------------------------- Cartesian Forces: Max 0.121511539 RMS 0.053738820 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.138534099 RMS 0.056206112 Search for a local minimum. Step number 4 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -1.51D-01 DEPred=-1.50D-01 R= 1.01D+00 TightC=F SS= 1.41D+00 RLast= 8.49D-01 DXNew= 1.4270D+00 2.5456D+00 Trust test= 1.01D+00 RLast= 8.49D-01 DXMaxT set to 1.43D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.01414 R2 -0.01465 0.00997 R3 -0.02545 -0.03374 -0.01575 R4 -0.00695 -0.00958 -0.01691 0.01628 A1 -0.00602 -0.00700 -0.01110 -0.00435 0.24855 A2 0.00420 0.00497 0.00793 0.00300 0.00105 A3 0.00388 0.00440 0.00690 0.00287 0.00084 A4 -0.00203 -0.00232 -0.00364 -0.00150 -0.00041 A5 0.00063 0.00088 0.00141 0.00042 0.00015 A6 0.00019 0.00030 0.00060 0.00011 0.00026 A7 -0.00033 -0.00048 -0.00083 -0.00021 -0.00019 A8 0.00001 0.00003 0.00007 0.00001 0.00005 D1 0.00017 0.00025 0.00044 0.00011 0.00010 A2 A3 A4 A5 A6 A2 0.24922 A3 -0.00057 0.24941 A4 0.00027 0.00030 0.24984 A5 -0.00012 -0.00009 0.00006 0.00225 A6 -0.00016 -0.00022 0.00012 -0.00002 0.00229 A7 0.00013 0.00014 -0.00008 0.00003 0.00001 A8 -0.00003 -0.00004 0.00002 0.00000 0.00000 D1 -0.00007 -0.00008 0.00004 -0.00002 -0.00001 A7 A8 D1 A7 0.00228 A8 0.00000 0.00230 D1 0.00001 0.00000 0.00230 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.05925 0.00230 0.00252 0.02154 0.02658 Eigenvalues --- 0.03419 0.12021 0.12621 0.24885 RFO step: Lambda=-2.34132741D-01 EMin=-5.92513371D-02 Skip linear search -- no minimum in search direction. Iteration 1 RMS(Cart)= 0.11907237 RMS(Int)= 0.17381876 Iteration 2 RMS(Cart)= 0.10136396 RMS(Int)= 0.08612311 Iteration 3 RMS(Cart)= 0.05855960 RMS(Int)= 0.02727905 Iteration 4 RMS(Cart)= 0.02438224 RMS(Int)= 0.00007269 Iteration 5 RMS(Cart)= 0.00000932 RMS(Int)= 0.00006671 Iteration 6 RMS(Cart)= 0.00000001 RMS(Int)= 0.00006671 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.43265 -0.08769 0.00000 -0.42302 -0.42302 4.00963 R2 4.17374 -0.09689 0.00000 -0.48091 -0.48091 3.69282 R3 3.50168 -0.13853 0.00000 -0.69803 -0.69803 2.80365 R4 4.84565 -0.06720 0.00000 -0.31886 -0.31886 4.52679 A1 1.73757 -0.01093 0.00000 -0.05159 -0.05159 1.68598 A2 1.56174 0.00834 0.00000 0.03838 0.03839 1.60013 A3 1.42526 0.00673 0.00000 0.03118 0.03115 1.45641 A4 1.56430 -0.00407 0.00000 -0.01756 -0.01758 1.54672 A5 3.12604 0.00427 0.00000 0.02082 0.02080 3.14685 A6 2.98957 0.00266 0.00000 0.01362 0.01356 3.00313 A7 3.02170 -0.00252 0.00000 -0.01314 -0.01318 3.00853 A8 3.08470 0.00037 0.00000 0.00180 0.00203 3.08673 D1 -2.90577 0.00136 0.00000 0.00709 0.00712 -2.89865 Item Value Threshold Converged? Maximum Force 0.138534 0.000450 NO RMS Force 0.056206 0.000300 NO Maximum Displacement 0.538165 0.001800 NO RMS Displacement 0.277832 0.001200 NO Predicted change in Energy=-2.327017D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.512973 1.887573 -0.104354 2 9 0 -1.425172 2.541383 0.357926 3 9 0 0.219926 -0.383739 -0.343164 4 9 0 -2.459616 -0.182008 0.396874 5 5 0 -0.379874 0.932991 -0.015117 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 3.045302 0.000000 3 F 2.624474 3.428442 0.000000 4 F 4.507312 2.913495 2.787167 0.000000 5 B 2.121806 1.954158 1.483629 2.395472 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 2.235767 0.067743 0.101785 2 9 0 -0.243821 1.826788 -0.075031 3 9 0 0.197243 -1.573086 -0.098118 4 9 0 -2.258847 -0.270333 0.098756 5 5 0 0.125385 -0.092002 -0.049307 --------------------------------------------------------------------- Rotational constants (GHZ): 4.4850207 2.5964262 1.6519532 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 131.9103571623 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 1.13D-01 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998413 -0.002005 0.000830 0.056267 Ang= -6.46 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1368141. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -419.978896140 A.U. after 16 cycles NFock= 16 Conv=0.72D-08 -V/T= 2.0054 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.091559383 -0.038646432 0.005938459 2 9 0.071448659 -0.100922751 -0.027647979 3 9 -0.054196430 0.106733571 0.022946541 4 9 0.060972922 0.031478660 -0.011452825 5 5 0.013334232 0.001356952 0.010215805 ------------------------------------------------------------------- Cartesian Forces: Max 0.106733571 RMS 0.055345150 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.126562109 RMS 0.059402693 Search for a local minimum. Step number 5 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 DE= -2.18D-01 DEPred=-2.33D-01 R= 9.35D-01 TightC=F SS= 1.41D+00 RLast= 1.00D+00 DXNew= 2.4000D+00 3.0081D+00 Trust test= 9.35D-01 RLast= 1.00D+00 DXMaxT set to 2.40D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.00575 R2 -0.04583 -0.08253 R3 0.01458 0.04835 -0.01635 R4 -0.00490 -0.01092 -0.00107 0.01923 A1 -0.00498 -0.00539 -0.00964 -0.00374 0.24863 A2 0.00764 0.01428 0.00144 0.00350 0.00096 A3 0.00082 -0.00259 0.00901 0.00194 0.00080 A4 -0.00327 -0.00577 -0.00102 -0.00164 -0.00037 A5 0.00238 0.00613 -0.00340 0.00046 0.00005 A6 -0.00393 -0.00991 0.00569 -0.00084 0.00028 A7 -0.00065 -0.00176 0.00093 -0.00010 -0.00014 A8 -0.00161 -0.00408 0.00233 -0.00034 0.00007 D1 0.00049 0.00131 -0.00071 0.00008 0.00007 A2 A3 A4 A5 A6 A2 0.24833 A3 0.00004 0.24912 A4 0.00061 0.00007 0.24972 A5 -0.00065 0.00031 0.00025 0.00195 A6 0.00077 -0.00076 -0.00024 0.00057 0.00138 A7 0.00027 0.00001 -0.00013 0.00010 -0.00016 A8 0.00035 -0.00028 -0.00012 0.00023 -0.00038 D1 -0.00018 0.00002 0.00008 -0.00008 0.00012 A7 A8 D1 A7 0.00227 A8 -0.00007 0.00214 D1 0.00002 0.00005 0.00228 ITU= 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.12795 0.00212 0.00232 0.00258 0.02185 Eigenvalues --- 0.02677 0.11877 0.12618 0.24885 RFO step: Lambda=-2.37119421D-01 EMin=-1.27946247D-01 Skip linear search -- no minimum in search direction. Iteration 1 RMS(Cart)= 0.12220122 RMS(Int)= 0.26215915 Iteration 2 RMS(Cart)= 0.08650108 RMS(Int)= 0.18592506 Iteration 3 RMS(Cart)= 0.07071839 RMS(Int)= 0.12013184 Iteration 4 RMS(Cart)= 0.04992321 RMS(Int)= 0.06451009 Iteration 5 RMS(Cart)= 0.04955214 RMS(Int)= 0.00904828 Iteration 6 RMS(Cart)= 0.00807398 RMS(Int)= 0.00034921 Iteration 7 RMS(Cart)= 0.00000125 RMS(Int)= 0.00034919 Iteration 8 RMS(Cart)= 0.00000000 RMS(Int)= 0.00034919 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.00963 -0.09932 0.00000 -0.61883 -0.61883 3.39080 R2 3.69282 -0.12656 0.00000 -1.03238 -1.03238 2.66044 R3 2.80365 -0.12171 0.00000 -0.26138 -0.26138 2.54227 R4 4.52679 -0.06956 0.00000 -0.33424 -0.33424 4.19255 A1 1.68598 -0.01079 0.00000 -0.04464 -0.04454 1.64144 A2 1.60013 0.01109 0.00000 0.07703 0.07702 1.67715 A3 1.45641 0.00503 0.00000 0.00264 0.00288 1.45929 A4 1.54672 -0.00512 0.00000 -0.03210 -0.03198 1.51474 A5 3.14685 0.00597 0.00000 0.04494 0.04504 3.19189 A6 3.00313 -0.00009 0.00000 -0.02946 -0.02910 2.97403 A7 3.00853 -0.00301 0.00000 -0.02287 -0.02264 2.98589 A8 3.08673 -0.00076 0.00000 -0.01772 -0.01884 3.06789 D1 -2.89865 0.00173 0.00000 0.01537 0.01514 -2.88351 Item Value Threshold Converged? Maximum Force 0.126562 0.000450 NO RMS Force 0.059403 0.000300 NO Maximum Displacement 0.712410 0.001800 NO RMS Displacement 0.348533 0.001200 NO Predicted change in Energy=-3.123469D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.185524 1.867357 -0.042774 2 9 0 -1.133327 2.164392 0.262162 3 9 0 0.110619 -0.208865 -0.318234 4 9 0 -2.308676 -0.028633 0.397391 5 5 0 -0.385903 1.001950 -0.006380 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.357602 0.000000 3 F 2.354144 2.741644 0.000000 4 F 3.999745 2.491805 2.529346 0.000000 5 B 1.794335 1.407846 1.345310 2.218601 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.932071 0.030050 0.111230 2 9 0 0.001640 1.367926 -0.093252 3 9 0 0.052671 -1.373241 -0.090338 4 9 0 -2.067485 -0.007066 0.099643 5 5 0 0.145985 -0.031804 -0.049109 --------------------------------------------------------------------- Rotational constants (GHZ): 7.0019437 3.2991306 2.2579555 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 155.5071075591 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 8.61D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999117 0.008560 0.002323 0.041063 Ang= 4.82 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1368544. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.217097065 A.U. after 13 cycles NFock= 13 Conv=0.91D-08 -V/T= 2.0042 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.080375004 -0.046544004 0.002734528 2 9 0.028045279 -0.058479598 -0.020207671 3 9 -0.018904031 0.017147326 -0.001328197 4 9 0.044962798 0.020536634 -0.008199166 5 5 0.026270959 0.067339643 0.027000506 ------------------------------------------------------------------- Cartesian Forces: Max 0.080375004 RMS 0.038614611 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.092893756 RMS 0.035780140 Search for a local minimum. Step number 6 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 5 6 DE= -2.38D-01 DEPred=-3.12D-01 R= 7.63D-01 TightC=F SS= 1.41D+00 RLast= 1.28D+00 DXNew= 4.0363D+00 3.8439D+00 Trust test= 7.63D-01 RLast= 1.28D+00 DXMaxT set to 3.00D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.02062 R2 -0.00587 0.04343 R3 0.00276 0.06265 0.10710 R4 -0.00068 0.00820 0.01490 0.02369 A1 -0.00326 0.00725 0.00888 0.00011 0.25230 A2 0.00665 0.00975 -0.00243 0.00243 0.00003 A3 0.00028 -0.00737 0.00122 0.00039 -0.00069 A4 -0.00331 -0.00824 -0.00681 -0.00264 -0.00139 A5 -0.00066 -0.00589 -0.01052 -0.00202 -0.00196 A6 -0.00090 -0.00811 -0.01247 -0.00265 -0.00212 A7 -0.00023 -0.00237 -0.00378 -0.00072 -0.00086 A8 -0.00046 -0.00428 -0.00670 -0.00139 -0.00122 D1 0.00006 0.00072 0.00105 0.00020 0.00027 A2 A3 A4 A5 A6 A2 0.24859 A3 0.00041 0.24973 A4 0.00085 0.00049 0.25001 A5 -0.00006 0.00111 0.00075 0.00337 A6 0.00121 0.00026 0.00056 0.00126 0.00418 A7 0.00042 0.00031 0.00009 0.00038 0.00053 A8 0.00060 0.00027 0.00029 0.00068 0.00098 D1 -0.00021 -0.00007 0.00001 -0.00011 -0.00016 A7 A8 D1 A7 0.00245 A8 0.00028 0.00281 D1 -0.00004 -0.00008 0.00231 ITU= 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00169 0.00231 0.00276 0.02131 0.02288 Eigenvalues --- 0.10935 0.12267 0.16612 0.24963 RFO step: Lambda=-5.17543317D-02 EMin= 1.69321625D-03 Quartic linear search produced a step of 0.36250. Iteration 1 RMS(Cart)= 0.12976995 RMS(Int)= 0.20555493 Iteration 2 RMS(Cart)= 0.07910057 RMS(Int)= 0.13763602 Iteration 3 RMS(Cart)= 0.05406032 RMS(Int)= 0.08151933 Iteration 4 RMS(Cart)= 0.04957688 RMS(Int)= 0.02641516 Iteration 5 RMS(Cart)= 0.02312658 RMS(Int)= 0.00530239 Iteration 6 RMS(Cart)= 0.00001037 RMS(Int)= 0.00530238 Iteration 7 RMS(Cart)= 0.00000000 RMS(Int)= 0.00530238 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.39080 -0.09289 -0.22433 -0.65983 -0.88416 2.50664 R2 2.66044 -0.06703 -0.37424 0.11823 -0.25601 2.40443 R3 2.54227 -0.02210 -0.09475 0.17673 0.08198 2.62424 R4 4.19255 -0.05000 -0.12116 -0.32324 -0.44440 3.74815 A1 1.64144 0.00820 -0.01615 0.07412 0.05984 1.70128 A2 1.67715 0.00639 0.02792 0.02216 0.04988 1.72704 A3 1.45929 -0.00275 0.00104 -0.01925 -0.01344 1.44585 A4 1.51474 -0.01049 -0.01159 -0.06242 -0.07176 1.44298 A5 3.19189 -0.00410 0.01633 -0.04027 -0.02188 3.17001 A6 2.97403 -0.01324 -0.01055 -0.08167 -0.08520 2.88883 A7 2.98589 -0.00684 -0.00821 -0.11109 -0.11369 2.87219 A8 3.06789 -0.00772 -0.00683 -0.06722 -0.08887 2.97902 D1 -2.88351 0.00284 0.00549 0.04636 0.04641 -2.83710 Item Value Threshold Converged? Maximum Force 0.092894 0.000450 NO RMS Force 0.035780 0.000300 NO Maximum Displacement 0.671487 0.001800 NO RMS Displacement 0.282976 0.001200 NO Predicted change in Energy=-1.144842D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.830189 1.687914 0.051464 2 9 0 -1.073357 2.105289 0.192695 3 9 0 0.083714 -0.190950 -0.365495 4 9 0 -2.025061 0.113917 0.422148 5 5 0 -0.347248 1.080030 -0.008646 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 1.953877 0.000000 3 F 2.064270 2.631179 0.000000 4 F 3.281360 2.218998 2.271620 0.000000 5 B 1.326459 1.272372 1.388689 1.983435 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.531842 0.004898 0.173126 2 9 0 0.084608 1.277296 -0.149596 3 9 0 0.007574 -1.352712 -0.134623 4 9 0 -1.748865 0.061398 0.140096 5 5 0 0.224713 0.016417 -0.052205 --------------------------------------------------------------------- Rotational constants (GHZ): 7.4786425 4.8075297 2.9866068 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 176.0622863600 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.75D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999844 0.003283 0.003881 0.016911 Ang= 2.02 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1368958. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.269080336 A.U. after 13 cycles NFock= 13 Conv=0.61D-08 -V/T= 2.0018 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.106871405 0.030082165 0.008661792 2 9 -0.106201038 0.092935215 -0.002409847 3 9 -0.014906334 0.000683393 -0.018541856 4 9 0.022478619 0.008894128 0.002332408 5 5 -0.008242651 -0.132594901 0.009957502 ------------------------------------------------------------------- Cartesian Forces: Max 0.132594901 RMS 0.058439532 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.135110711 RMS 0.052393659 Search for a local minimum. Step number 7 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 6 7 DE= -5.20D-02 DEPred=-1.14D-01 R= 4.54D-01 Trust test= 4.54D-01 RLast= 1.05D+00 DXMaxT set to 3.00D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.18349 R2 0.16885 0.21931 R3 0.01092 0.08057 0.10024 R4 0.01479 0.03116 0.01064 0.02167 A1 0.03817 0.03578 0.02359 0.01281 0.24090 A2 0.00247 0.00372 -0.00142 0.00288 -0.00315 A3 -0.01452 -0.02073 -0.00152 -0.00240 -0.00099 A4 -0.01370 -0.00937 -0.01528 -0.00914 0.00977 A5 -0.00578 -0.01224 -0.01009 -0.00203 -0.00445 A6 -0.01244 -0.02144 -0.01230 -0.00323 -0.00636 A7 -0.01978 -0.02226 -0.00562 -0.00318 -0.00433 A8 -0.02119 -0.02587 -0.00825 -0.00371 -0.00560 D1 0.00647 0.00721 0.00168 0.00102 0.00137 A2 A3 A4 A5 A6 A2 0.24849 A3 0.00112 0.25052 A4 0.00245 -0.00075 0.24199 A5 -0.00004 0.00177 0.00183 0.00346 A6 0.00138 0.00152 0.00211 0.00156 0.00492 A7 0.00107 0.00185 0.00039 0.00108 0.00200 A8 0.00122 0.00201 0.00105 0.00138 0.00250 D1 -0.00042 -0.00057 -0.00006 -0.00034 -0.00065 A7 A8 D1 A7 0.00470 A8 0.00270 0.00541 D1 -0.00078 -0.00088 0.00255 ITU= 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00191 0.00231 0.00416 0.02048 0.09507 Eigenvalues --- 0.11087 0.13048 0.24689 0.41675 RFO step: Lambda=-8.53320480D-02 EMin= 1.91184163D-03 Quartic linear search produced a step of -0.23682. Iteration 1 RMS(Cart)= 0.18209780 RMS(Int)= 0.11213134 Iteration 2 RMS(Cart)= 0.07610724 RMS(Int)= 0.03489748 Iteration 3 RMS(Cart)= 0.02706331 RMS(Int)= 0.01732821 Iteration 4 RMS(Cart)= 0.00005491 RMS(Int)= 0.01732813 Iteration 5 RMS(Cart)= 0.00000206 RMS(Int)= 0.01732813 Iteration 6 RMS(Cart)= 0.00000010 RMS(Int)= 0.01732813 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.50664 0.10904 0.20938 -0.22320 -0.01382 2.49282 R2 2.40443 0.13511 0.06063 0.40292 0.46355 2.86798 R3 2.62424 -0.00049 -0.01941 -0.19519 -0.21460 2.40964 R4 3.74815 -0.02284 0.10524 -0.59358 -0.48834 3.25981 A1 1.70128 0.03961 -0.01417 0.16176 0.15681 1.85809 A2 1.72704 -0.00073 -0.01181 0.04473 0.03370 1.76073 A3 1.44585 -0.01794 0.00318 -0.03628 -0.01188 1.43397 A4 1.44298 -0.01080 0.01699 -0.08989 -0.06541 1.37756 A5 3.17001 -0.01153 0.00518 -0.04516 -0.03172 3.13829 A6 2.88883 -0.02874 0.02018 -0.12617 -0.07729 2.81154 A7 2.87219 -0.02971 0.02692 -0.29104 -0.23569 2.63651 A8 2.97902 -0.03261 0.02105 -0.22518 -0.23412 2.74490 D1 -2.83710 0.01031 -0.01099 0.11920 0.08153 -2.75557 Item Value Threshold Converged? Maximum Force 0.135111 0.000450 NO RMS Force 0.052394 0.000300 NO Maximum Displacement 0.554965 0.001800 NO RMS Displacement 0.259395 0.001200 NO Predicted change in Energy=-7.442128D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.872175 1.524556 0.204226 2 9 0 -1.293620 2.209252 0.067927 3 9 0 -0.045931 -0.133510 -0.435406 4 9 0 -1.731386 0.158265 0.476156 5 5 0 -0.333001 1.037639 -0.020737 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.275533 0.000000 3 F 2.000307 2.701593 0.000000 4 F 2.952833 2.136548 1.938256 0.000000 5 B 1.319145 1.517671 1.275128 1.725017 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.483963 0.110357 0.283335 2 9 0 -0.299934 1.424933 -0.234019 3 9 0 0.136094 -1.239929 -0.317670 4 9 0 -1.440195 -0.299581 0.305142 5 5 0 0.216131 0.007596 -0.066218 --------------------------------------------------------------------- Rotational constants (GHZ): 6.6479091 5.6079554 3.2915385 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 179.0450720681 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 8.28D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.995582 -0.029217 -0.021479 -0.086616 Ang= -10.78 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1369075. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.283084402 A.U. after 13 cycles NFock= 13 Conv=0.66D-08 -V/T= 2.0019 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.062277256 0.062130610 0.036188906 2 9 0.063655842 -0.017326491 -0.038431713 3 9 0.073626828 -0.119083156 -0.118702737 4 9 -0.008112359 0.022545771 0.043882007 5 5 -0.191447567 0.051733266 0.077063537 ------------------------------------------------------------------- Cartesian Forces: Max 0.191447567 RMS 0.080140155 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.164550267 RMS 0.065271757 Search for a local minimum. Step number 8 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 8 DE= -1.40D-02 DEPred=-7.44D-02 R= 1.88D-01 Trust test= 1.88D-01 RLast= 8.09D-01 DXMaxT set to 3.00D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.03229 R2 0.03819 0.29550 R3 -0.05046 -0.16521 0.27174 R4 -0.00105 -0.01898 0.04135 0.02703 A1 -0.03381 0.03440 -0.06762 -0.00646 0.22620 A2 -0.01284 -0.02207 0.00517 0.00369 -0.01448 A3 0.00525 -0.01716 0.02028 0.00227 0.00408 A4 -0.00333 -0.07182 0.06171 0.00571 -0.00826 A5 -0.00972 -0.09946 0.07373 0.01371 -0.03328 A6 -0.00985 -0.10877 0.08004 0.01430 -0.03393 A7 0.00446 0.04635 -0.04436 -0.00982 0.02254 A8 -0.00133 -0.01061 0.00175 -0.00127 0.00325 D1 -0.00380 -0.03465 0.03113 0.00630 -0.01413 A2 A3 A4 A5 A6 A2 0.24777 A3 0.00402 0.24890 A4 0.00825 0.00299 0.26824 A5 0.00513 0.00827 0.03375 0.04051 A6 0.00760 0.00758 0.03576 0.04132 0.04730 A7 0.00035 -0.00472 -0.01927 -0.01942 -0.02099 A8 0.00336 -0.00045 0.00041 0.00274 0.00306 D1 0.00073 0.00313 0.01310 0.01402 0.01515 A7 A8 D1 A7 0.01283 A8 -0.00096 0.00282 D1 -0.00745 0.00080 0.00761 ITU= 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.00362 0.01135 0.02445 0.10081 Eigenvalues --- 0.11456 0.13283 0.24674 0.60351 RFO step: Lambda=-1.33123499D-01 EMin= 2.29674249D-03 Quartic linear search produced a step of -0.43150. Iteration 1 RMS(Cart)= 0.15258400 RMS(Int)= 0.15254027 Iteration 2 RMS(Cart)= 0.07146639 RMS(Int)= 0.08167771 Iteration 3 RMS(Cart)= 0.05139206 RMS(Int)= 0.02528965 Iteration 4 RMS(Cart)= 0.02248992 RMS(Int)= 0.00223067 Iteration 5 RMS(Cart)= 0.00001629 RMS(Int)= 0.00223063 Iteration 6 RMS(Cart)= 0.00000003 RMS(Int)= 0.00223063 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.49282 0.08600 0.00596 0.69551 0.70147 3.19430 R2 2.86798 -0.05591 -0.20002 0.17621 -0.02381 2.84417 R3 2.40964 0.16455 0.09260 0.36078 0.45338 2.86302 R4 3.25981 0.00772 0.21072 -0.07872 0.13199 3.39180 A1 1.85809 -0.02640 -0.06766 0.12245 0.05993 1.91802 A2 1.76073 0.00831 -0.01454 0.03985 0.02788 1.78861 A3 1.43397 -0.00270 0.00513 -0.04021 -0.03234 1.40163 A4 1.37756 0.05540 0.02823 0.06059 0.08860 1.46617 A5 3.13829 0.06371 0.01369 0.10043 0.11648 3.25478 A6 2.81154 0.05270 0.03335 0.02038 0.05626 2.86780 A7 2.63651 -0.06915 0.10170 -0.26746 -0.16358 2.47293 A8 2.74490 -0.02786 0.10102 -0.27377 -0.17017 2.57473 D1 -2.75557 0.03859 -0.03518 0.10425 0.06826 -2.68730 Item Value Threshold Converged? Maximum Force 0.164550 0.000450 NO RMS Force 0.065272 0.000300 NO Maximum Displacement 0.488584 0.001800 NO RMS Displacement 0.260924 0.001200 NO Predicted change in Energy=-1.348563D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.130722 1.646915 0.396436 2 9 0 -1.397416 2.181578 -0.023845 3 9 0 -0.061386 -0.278967 -0.666270 4 9 0 -1.810588 0.185933 0.627199 5 5 0 -0.393095 1.060742 -0.041355 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.618011 0.000000 3 F 2.501897 2.872623 0.000000 4 F 3.292267 2.139432 2.224613 0.000000 5 B 1.690349 1.505071 1.515048 1.794865 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.762344 0.249760 0.377424 2 9 0 -0.457094 1.382412 -0.425802 3 9 0 0.098961 -1.435877 -0.429590 4 9 0 -1.491961 -0.221121 0.541099 5 5 0 0.157950 0.044685 -0.113637 --------------------------------------------------------------------- Rotational constants (GHZ): 5.4356678 4.1736677 2.7565292 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 159.6426248798 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 9.19D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998882 0.037862 -0.025485 -0.012312 Ang= 5.42 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1368717. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.272916563 A.U. after 13 cycles NFock= 13 Conv=0.62D-08 -V/T= 2.0049 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.114383249 -0.037580247 -0.024939973 2 9 0.091400704 -0.025253324 -0.040070387 3 9 0.004252642 0.097702822 -0.000486297 4 9 0.065499521 0.019827996 0.006646442 5 5 -0.046769618 -0.054697247 0.058850214 ------------------------------------------------------------------- Cartesian Forces: Max 0.114383249 RMS 0.056949960 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.122605584 RMS 0.058085031 Search for a local minimum. Step number 9 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 9 8 DE= 1.02D-02 DEPred=-1.35D-01 R=-7.54D-02 Trust test=-7.54D-02 RLast= 8.98D-01 DXMaxT set to 1.50D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.18714 R2 0.04812 0.18779 R3 0.14696 0.00687 0.28889 R4 0.05112 0.02036 0.05491 0.03266 A1 -0.04909 -0.03521 0.01388 0.01119 0.18423 A2 -0.00713 -0.01962 0.00937 0.00492 -0.01372 A3 -0.02898 -0.01049 -0.03640 -0.01220 0.01307 A4 0.03455 0.00872 -0.00493 -0.00747 0.03748 A5 0.03195 -0.04209 0.04637 0.00958 -0.00275 A6 -0.00841 -0.05114 -0.00279 -0.00433 0.00238 A7 -0.00527 0.01366 -0.00958 -0.00245 0.00319 A8 -0.00283 -0.01016 -0.00097 -0.00195 0.00374 D1 -0.00514 -0.01322 -0.00224 -0.00130 -0.00037 A2 A3 A4 A5 A6 A2 0.24794 A3 0.00259 0.25574 A4 0.00814 -0.01177 0.22119 A5 0.00561 -0.00541 0.00451 0.02411 A6 0.00654 0.00255 -0.00537 0.01266 0.01675 A7 0.00061 0.00005 0.00147 -0.00585 -0.00405 A8 0.00329 -0.00016 -0.00036 0.00206 0.00276 D1 0.00027 0.00167 -0.00274 0.00279 0.00371 A7 A8 D1 A7 0.00394 A8 -0.00070 0.00283 D1 -0.00099 0.00071 0.00335 ITU= -1 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.00802 0.01982 0.04099 0.09204 Eigenvalues --- 0.13186 0.20793 0.24606 0.43215 RFO step: Lambda=-9.63634903D-02 EMin= 2.29638244D-03 Quartic linear search produced a step of -0.60528. Iteration 1 RMS(Cart)= 0.17916332 RMS(Int)= 0.15354187 Iteration 2 RMS(Cart)= 0.07647282 RMS(Int)= 0.09538887 Iteration 3 RMS(Cart)= 0.04889514 RMS(Int)= 0.04165546 Iteration 4 RMS(Cart)= 0.03440961 RMS(Int)= 0.01562916 Iteration 5 RMS(Cart)= 0.00006297 RMS(Int)= 0.01562905 Iteration 6 RMS(Cart)= 0.00000066 RMS(Int)= 0.01562905 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.19430 -0.12261 -0.42459 -0.29013 -0.71472 2.47957 R2 2.84417 -0.08026 0.01441 -0.06015 -0.04574 2.79843 R3 2.86302 -0.08526 -0.27442 0.20337 -0.07105 2.79197 R4 3.39180 -0.05892 -0.07989 -0.15909 -0.23898 3.15282 A1 1.91802 -0.01276 -0.03628 -0.11592 -0.12894 1.78908 A2 1.78861 0.00084 -0.01688 0.01998 0.01990 1.80852 A3 1.40163 0.04430 0.01958 0.13443 0.14109 1.54272 A4 1.46617 0.01228 -0.05363 0.22437 0.15899 1.62515 A5 3.25478 0.01313 -0.07051 0.24434 0.17889 3.43367 A6 2.86780 0.05659 -0.03405 0.35880 0.30008 3.16787 A7 2.47293 -0.05930 0.09901 -0.35154 -0.27233 2.20059 A8 2.57473 -0.02578 0.10300 -0.12397 -0.00470 2.57003 D1 -2.68730 0.04258 -0.04132 0.22194 0.20813 -2.47917 Item Value Threshold Converged? Maximum Force 0.122606 0.000450 NO RMS Force 0.058085 0.000300 NO Maximum Displacement 0.790408 0.001800 NO RMS Displacement 0.302726 0.001200 NO Predicted change in Energy=-8.449742D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.712456 1.483127 0.443296 2 9 0 -1.259073 2.237534 -0.104588 3 9 0 0.013297 -0.213042 -0.761601 4 9 0 -1.596043 0.258712 0.794591 5 5 0 -0.402400 1.029870 -0.079532 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.180879 0.000000 3 F 2.194901 2.838295 0.000000 4 F 2.636620 2.199502 2.287851 0.000000 5 B 1.312134 1.480867 1.477448 1.668400 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.184621 1.244412 0.589352 2 9 0 -1.376056 0.221980 -0.539874 3 9 0 1.430492 -0.199227 -0.497526 4 9 0 -0.263807 -1.352835 0.518743 5 5 0 0.044549 0.154204 -0.127252 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7252598 5.1063006 3.5345021 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 173.3837377981 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 8.13D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Lowest energy guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.807282 0.014824 0.051831 -0.587698 Ang= 72.34 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.810862 -0.040965 0.056802 -0.581033 Ang= -71.64 deg. Keep R1 ints in memory in canonical form, NReq=1368985. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.381074997 A.U. after 11 cycles NFock= 11 Conv=0.97D-08 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.064970948 0.021311823 0.034857106 2 9 0.032966210 -0.031050762 -0.055175025 3 9 -0.022699740 0.062545254 -0.019093817 4 9 0.065195138 0.024430442 -0.022974821 5 5 -0.140432556 -0.077236757 0.062386557 ------------------------------------------------------------------- Cartesian Forces: Max 0.140432556 RMS 0.058155766 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.087501129 RMS 0.047884856 Search for a local minimum. Step number 10 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 8 10 DE= -9.80D-02 DEPred=-8.45D-02 R= 1.16D+00 TightC=F SS= 1.41D+00 RLast= 8.68D-01 DXNew= 2.5227D+00 2.6050D+00 Trust test= 1.16D+00 RLast= 8.68D-01 DXMaxT set to 2.52D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.14002 R2 0.08567 0.15806 R3 0.07580 0.05553 0.51368 R4 0.04638 0.02106 0.17501 0.08093 A1 -0.05658 -0.02639 -0.11530 -0.03471 0.22486 A2 -0.02589 -0.00408 -0.04347 -0.00636 -0.00801 A3 -0.04208 0.00175 -0.13061 -0.04203 0.03739 A4 0.00232 0.03228 0.03375 0.02274 0.00138 A5 0.00858 -0.02521 0.08318 0.03485 -0.03204 A6 -0.01815 -0.04398 0.00737 0.00422 -0.00799 A7 -0.00131 0.01206 -0.06820 -0.02680 0.02674 A8 0.00042 -0.01517 0.10394 0.03668 -0.03122 D1 -0.00683 -0.01227 0.01143 0.00474 -0.00639 A2 A3 A4 A5 A6 A2 0.24228 A3 0.00287 0.26877 A4 -0.01113 -0.04029 0.22211 A5 -0.00901 -0.02806 0.00748 0.02816 A6 0.00083 -0.00573 -0.00550 0.01323 0.01660 A7 0.00696 0.01563 -0.01280 -0.01790 -0.00806 A8 -0.00279 -0.02167 0.02815 0.02537 0.01091 D1 -0.00160 -0.00243 0.00037 0.00548 0.00458 A7 A8 D1 A7 0.01617 A8 -0.02042 0.03271 D1 -0.00400 0.00570 0.00408 ITU= 1 -1 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00226 0.00632 0.03180 0.05653 0.06982 Eigenvalues --- 0.13624 0.22450 0.24661 0.71344 RFO step: Lambda=-2.10921757D-01 EMin= 2.26047370D-03 Quartic linear search produced a step of 0.72659. Iteration 1 RMS(Cart)= 0.23282421 RMS(Int)= 0.18437145 Iteration 2 RMS(Cart)= 0.15895182 RMS(Int)= 0.10051145 Iteration 3 RMS(Cart)= 0.04179228 RMS(Int)= 0.09190303 Iteration 4 RMS(Cart)= 0.00593884 RMS(Int)= 0.09176298 Iteration 5 RMS(Cart)= 0.00163841 RMS(Int)= 0.09177427 Iteration 6 RMS(Cart)= 0.00091975 RMS(Int)= 0.09179317 Iteration 7 RMS(Cart)= 0.00057632 RMS(Int)= 0.09180893 Iteration 8 RMS(Cart)= 0.00036093 RMS(Int)= 0.09182028 Iteration 9 RMS(Cart)= 0.00022560 RMS(Int)= 0.09182796 Iteration 10 RMS(Cart)= 0.00014092 RMS(Int)= 0.09183298 Iteration 11 RMS(Cart)= 0.00008800 RMS(Int)= 0.09183621 Iteration 12 RMS(Cart)= 0.00005495 RMS(Int)= 0.09183826 Iteration 13 RMS(Cart)= 0.00003432 RMS(Int)= 0.09183955 Iteration 14 RMS(Cart)= 0.00002143 RMS(Int)= 0.09184036 Iteration 15 RMS(Cart)= 0.00001338 RMS(Int)= 0.09184087 Iteration 16 RMS(Cart)= 0.00000835 RMS(Int)= 0.09184119 Iteration 17 RMS(Cart)= 0.00000522 RMS(Int)= 0.09184139 Iteration 18 RMS(Cart)= 0.00000326 RMS(Int)= 0.09184151 Iteration 19 RMS(Cart)= 0.00000203 RMS(Int)= 0.09184159 Iteration 20 RMS(Cart)= 0.00000127 RMS(Int)= 0.09184164 Iteration 21 RMS(Cart)= 0.00000079 RMS(Int)= 0.09184167 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.47957 0.07645 -0.00963 0.36642 0.35680 2.83637 R2 2.79843 -0.04346 -0.05053 -0.11288 -0.16341 2.63502 R3 2.79197 -0.05019 0.27780 -0.10076 0.17704 2.96901 R4 3.15282 -0.06997 -0.07774 -0.37825 -0.45599 2.69683 A1 1.78908 0.04315 -0.05014 0.20696 0.19792 1.98699 A2 1.80852 0.01929 0.03472 0.09796 0.15658 1.96509 A3 1.54272 0.03952 0.07901 0.16960 0.35139 1.89411 A4 1.62515 -0.00379 0.17990 0.04052 0.19966 1.82481 A5 3.43367 0.01551 0.21462 0.13848 0.35624 3.78991 A6 3.16787 0.03574 0.25891 0.21011 0.55105 3.71892 A7 2.20059 -0.02939 -0.31673 -0.17157 -0.27034 1.93026 A8 2.57003 -0.08750 -0.12706 -0.43465 -0.44872 2.12131 D1 -2.47917 0.02847 0.20083 0.15873 0.18813 -2.29105 Item Value Threshold Converged? Maximum Force 0.087501 0.000450 NO RMS Force 0.047885 0.000300 NO Maximum Displacement 0.727295 0.001800 NO RMS Displacement 0.405868 0.001200 NO Predicted change in Energy=-1.426501D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.690789 1.426474 0.828164 2 9 0 -1.237750 2.091363 -0.486404 3 9 0 -0.166017 -0.075597 -1.054067 4 9 0 -1.311678 0.336193 0.983053 5 5 0 -0.507106 1.017767 0.021419 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.426815 0.000000 3 F 2.555998 2.483258 0.000000 4 F 2.285297 2.290282 2.373176 0.000000 5 B 1.500943 1.394394 1.571132 1.427102 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -1.023795 0.922782 -0.586435 2 9 0 -0.255651 -1.373439 -0.422867 3 9 0 1.466242 0.412731 -0.316816 4 9 0 -0.180069 0.066011 1.356926 5 5 0 -0.012107 -0.050553 -0.055455 --------------------------------------------------------------------- Rotational constants (GHZ): 4.9442898 4.6166391 4.2836409 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 172.0119030708 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.74D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.760179 0.490675 0.177196 -0.387257 Ang= 81.04 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1368827. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.462006720 A.U. after 12 cycles NFock= 12 Conv=0.54D-08 -V/T= 2.0044 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.043673069 -0.010541239 -0.053582291 2 9 0.020002971 -0.008808605 -0.005723215 3 9 -0.011586744 0.073002105 0.053931088 4 9 0.006547894 0.008548105 -0.018613828 5 5 0.028708949 -0.062200365 0.023988246 ------------------------------------------------------------------- Cartesian Forces: Max 0.073002105 RMS 0.036058331 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.090235635 RMS 0.034357921 Search for a local minimum. Step number 11 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 10 11 DE= -8.09D-02 DEPred=-1.43D-01 R= 5.67D-01 TightC=F SS= 1.41D+00 RLast= 1.17D+00 DXNew= 4.2426D+00 3.4994D+00 Trust test= 5.67D-01 RLast= 1.17D+00 DXMaxT set to 3.00D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.25171 R2 0.05602 0.14319 R3 0.09906 0.02520 0.49285 R4 0.00547 0.02554 0.15971 0.09412 A1 -0.01721 -0.01332 -0.08212 -0.04254 0.21441 A2 0.00653 0.00403 -0.01895 -0.01354 -0.01387 A3 0.00222 0.04671 -0.06113 -0.04235 -0.00565 A4 -0.00141 0.04138 0.04158 0.02638 -0.00833 A5 0.02995 -0.02807 0.09062 0.02781 -0.02742 A6 0.00337 -0.04218 0.01982 -0.00156 -0.00817 A7 -0.04488 0.02087 -0.08019 -0.01161 0.01422 A8 -0.05689 -0.00170 0.09016 0.05718 -0.04962 D1 -0.00543 -0.01183 0.01258 0.00446 -0.00674 A2 A3 A4 A5 A6 A2 0.23940 A3 -0.02597 0.14489 A4 -0.01818 -0.06200 0.21935 A5 -0.00488 -0.02660 0.00576 0.03191 A6 0.00156 -0.01591 -0.00890 0.01642 0.01827 A7 -0.00367 0.00520 -0.01036 -0.02590 -0.01555 A8 -0.01815 -0.04005 0.03069 0.01462 0.00045 D1 -0.00179 -0.00390 0.00003 0.00564 0.00458 A7 A8 D1 A7 0.03284 A8 0.00172 0.06198 D1 -0.00445 0.00505 0.00407 ITU= 1 1 -1 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00232 0.01716 0.03729 0.06689 0.12500 Eigenvalues --- 0.14824 0.22303 0.30136 0.65544 RFO step: Lambda=-4.49997522D-02 EMin= 2.32323722D-03 Quartic linear search produced a step of -0.07936. Iteration 1 RMS(Cart)= 0.13825008 RMS(Int)= 0.06703588 Iteration 2 RMS(Cart)= 0.06123496 RMS(Int)= 0.02070706 Iteration 3 RMS(Cart)= 0.00480669 RMS(Int)= 0.02025528 Iteration 4 RMS(Cart)= 0.00020836 RMS(Int)= 0.02025466 Iteration 5 RMS(Cart)= 0.00001020 RMS(Int)= 0.02025466 Iteration 6 RMS(Cart)= 0.00000052 RMS(Int)= 0.02025466 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.83637 -0.06653 -0.02832 -0.15153 -0.17984 2.65653 R2 2.63502 -0.01518 0.01297 -0.04456 -0.03159 2.60343 R3 2.96901 -0.09024 -0.01405 -0.08780 -0.10185 2.86716 R4 2.69683 -0.02032 0.03619 0.02668 0.06287 2.75970 A1 1.98699 0.00276 -0.01571 -0.04212 -0.11311 1.87388 A2 1.96509 -0.01511 -0.01243 -0.02774 -0.05075 1.91435 A3 1.89411 0.00694 -0.02789 0.13197 0.09731 1.99142 A4 1.82481 0.00445 -0.01584 0.14143 0.13433 1.95915 A5 3.78991 -0.01066 -0.02827 0.11368 0.08359 3.87349 A6 3.71892 0.01138 -0.04373 0.27340 0.23165 3.95057 A7 1.93026 0.02521 0.02145 0.33709 0.34208 2.27233 A8 2.12131 -0.01489 0.03561 -0.25437 -0.24305 1.87826 D1 -2.29105 0.02703 -0.01493 0.40656 0.35737 -1.93367 Item Value Threshold Converged? Maximum Force 0.090236 0.000450 NO RMS Force 0.034358 0.000300 NO Maximum Displacement 0.348344 0.001800 NO RMS Displacement 0.186274 0.001200 NO Predicted change in Energy=-3.300284D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.675921 1.462428 0.704906 2 9 0 -1.100230 1.986328 -0.560437 3 9 0 -0.183951 0.108739 -1.068005 4 9 0 -1.412138 0.279017 1.070984 5 5 0 -0.511364 0.959688 0.144717 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.242828 0.000000 3 F 2.390621 2.150008 0.000000 4 F 2.427852 2.381960 2.472390 0.000000 5 B 1.405775 1.377678 1.517237 1.460369 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.048079 1.390547 0.377897 2 9 0 0.542270 -0.109633 -1.214433 3 9 0 0.897567 -0.806025 0.788399 4 9 0 -1.440764 -0.498381 0.046592 5 5 0 -0.084873 0.042283 0.002781 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2301244 4.9049087 4.4138775 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 176.1894719399 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.33D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.679527 -0.503840 0.472297 0.247636 Ang= -94.39 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1368905. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.468025504 A.U. after 12 cycles NFock= 12 Conv=0.20D-08 -V/T= 2.0039 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.013553365 -0.018660716 0.010787048 2 9 -0.028762482 0.029505991 0.016144178 3 9 -0.001458021 0.001749521 0.061705634 4 9 0.039517434 0.025580574 -0.030593339 5 5 0.004256434 -0.038175370 -0.058043521 ------------------------------------------------------------------- Cartesian Forces: Max 0.061705634 RMS 0.031001117 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.062322665 RMS 0.032359287 Search for a local minimum. Step number 12 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 12 DE= -6.02D-03 DEPred=-3.30D-02 R= 1.82D-01 Trust test= 1.82D-01 RLast= 6.75D-01 DXMaxT set to 3.00D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.16342 R2 0.05285 0.15613 R3 -0.05417 0.00250 0.24960 R4 -0.06276 -0.00217 0.07462 0.09031 A1 -0.03416 -0.01982 -0.10378 -0.04424 0.21382 A2 -0.00614 0.00996 -0.04937 -0.03569 -0.01919 A3 0.01440 0.04001 -0.03058 -0.01912 -0.00009 A4 0.01064 0.03998 0.06492 0.03924 -0.00518 A5 0.00724 -0.02872 0.05098 0.00993 -0.03186 A6 -0.02498 -0.06258 -0.00381 0.01407 -0.00486 A7 -0.04417 0.00238 -0.05454 0.02479 0.02272 A8 -0.00986 0.03493 0.12569 0.02586 -0.05636 D1 -0.03450 -0.03581 -0.00760 0.02642 -0.00196 A2 A3 A4 A5 A6 A2 0.24070 A3 -0.02771 0.14712 A4 -0.01734 -0.06266 0.21796 A5 -0.00805 -0.02356 0.00884 0.02607 A6 -0.01199 -0.00140 -0.00230 0.00887 0.03797 A7 -0.01262 0.01523 -0.00786 -0.02596 0.01219 A8 0.00569 -0.06565 0.01936 0.02718 -0.03638 D1 -0.01718 0.01265 0.00722 -0.00213 0.02933 A7 A8 D1 A7 0.05911 A8 -0.04824 0.13052 D1 0.02834 -0.04092 0.03484 ITU= 0 1 1 -1 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00730 0.01852 0.04886 0.09663 0.11290 Eigenvalues --- 0.15078 0.21304 0.28110 0.45973 RFO step: Lambda=-7.20042721D-02 EMin= 7.29909225D-03 Quartic linear search produced a step of -0.41069. Iteration 1 RMS(Cart)= 0.14154572 RMS(Int)= 0.11859265 Iteration 2 RMS(Cart)= 0.10619335 RMS(Int)= 0.02170891 Iteration 3 RMS(Cart)= 0.01132871 RMS(Int)= 0.01615272 Iteration 4 RMS(Cart)= 0.00033160 RMS(Int)= 0.01615015 Iteration 5 RMS(Cart)= 0.00000807 RMS(Int)= 0.01615015 Iteration 6 RMS(Cart)= 0.00000024 RMS(Int)= 0.01615015 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65653 -0.01382 0.07386 -0.38562 -0.31176 2.34477 R2 2.60343 0.02602 0.01297 0.08002 0.09299 2.69642 R3 2.86716 -0.05062 0.04183 -0.45871 -0.41688 2.45028 R4 2.75970 -0.05570 -0.02582 -0.35330 -0.37911 2.38058 A1 1.87388 -0.00487 0.04646 -0.16838 -0.10730 1.76658 A2 1.91435 0.01168 0.02084 -0.09825 -0.07206 1.84229 A3 1.99142 -0.02183 -0.03997 -0.00952 -0.06179 1.92963 A4 1.95915 -0.00827 -0.05517 0.10118 0.04329 2.00243 A5 3.87349 0.00341 -0.03433 0.00293 -0.02877 3.84472 A6 3.95057 -0.03010 -0.09514 0.09165 -0.01851 3.93206 A7 2.27233 -0.03099 -0.14049 -0.08798 -0.25715 2.01519 A8 1.87826 0.06232 0.09982 0.41012 0.49275 2.37101 D1 -1.93367 -0.02474 -0.14677 0.08652 -0.01977 -1.95344 Item Value Threshold Converged? Maximum Force 0.062323 0.000450 NO RMS Force 0.032359 0.000300 NO Maximum Displacement 0.396473 0.001800 NO RMS Displacement 0.249743 0.001200 NO Predicted change in Energy=-7.106228D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.476020 1.338398 0.601814 2 9 0 -1.137992 2.108830 -0.430572 3 9 0 -0.101027 0.065958 -0.858201 4 9 0 -1.232427 0.382058 0.945954 5 5 0 -0.536337 0.900957 0.033170 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.065047 0.000000 3 F 2.020824 2.330555 0.000000 4 F 1.987915 2.210313 2.152895 0.000000 5 B 1.240797 1.426885 1.296634 1.259750 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -0.037886 -0.016623 1.178846 2 9 0 1.279124 -0.436204 -0.355383 3 9 0 -1.027194 -0.765910 -0.416011 4 9 0 -0.188503 1.216441 -0.373145 5 5 0 -0.045974 0.004133 -0.061751 --------------------------------------------------------------------- Rotational constants (GHZ): 6.5080924 5.8336247 5.3347494 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 194.3719770643 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 5.87D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.568939 -0.428451 0.428876 0.555701 Ang=-110.65 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1369358. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.409025483 A.U. after 12 cycles NFock= 12 Conv=0.14D-08 -V/T= 2.0004 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.220568345 0.092726631 0.113698423 2 9 -0.028913525 -0.007448467 -0.031062545 3 9 0.007632415 -0.084620714 -0.111261191 4 9 -0.138511728 -0.094161140 0.114583613 5 5 -0.060775507 0.093503690 -0.085958300 ------------------------------------------------------------------- Cartesian Forces: Max 0.220568345 RMS 0.100875149 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.264757450 RMS 0.102079402 Search for a local minimum. Step number 13 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 13 12 DE= 5.90D-02 DEPred=-7.11D-02 R=-8.30D-01 Trust test=-8.30D-01 RLast= 8.70D-01 DXMaxT set to 1.50D+00 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.38093 R2 0.03929 0.14772 R3 0.09865 0.00756 0.33397 R4 0.14848 0.00547 0.19022 0.24865 A1 -0.01520 -0.02776 -0.07981 -0.01063 0.21054 A2 -0.02131 -0.00424 -0.03614 -0.01635 -0.03156 A3 0.04902 0.05196 -0.02851 -0.01725 0.01323 A4 0.01209 0.04755 0.05387 0.02343 0.00053 A5 -0.00044 -0.02598 0.04203 -0.00261 -0.03088 A6 0.00522 -0.05216 -0.00199 0.01572 0.00675 A7 0.01689 0.00743 -0.02560 0.06417 0.03451 A8 -0.12695 0.02310 0.07359 -0.04482 -0.08053 D1 -0.01357 -0.02303 -0.01512 0.01505 0.01014 A2 A3 A4 A5 A6 A2 0.21697 A3 -0.00703 0.13110 A4 -0.00492 -0.07410 0.21164 A5 -0.00383 -0.02822 0.00692 0.02579 A6 0.00604 -0.01536 -0.01228 0.00480 0.02580 A7 -0.00238 0.01144 -0.01478 -0.03027 0.00889 A8 -0.01746 -0.05511 0.03441 0.03598 -0.02720 D1 0.00442 -0.00551 -0.00430 -0.00631 0.01350 A7 A8 D1 A7 0.06777 A8 -0.06280 0.15400 D1 0.02072 -0.02305 0.01540 ITU= -1 0 1 1 -1 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01080 0.02690 0.05167 0.10188 0.14261 Eigenvalues --- 0.18089 0.23794 0.44503 0.62676 RFO step: Lambda=-5.11734787D-02 EMin= 1.08033963D-02 Quartic linear search produced a step of -0.64093. Iteration 1 RMS(Cart)= 0.09305690 RMS(Int)= 0.09945526 Iteration 2 RMS(Cart)= 0.07224046 RMS(Int)= 0.02402539 Iteration 3 RMS(Cart)= 0.01826364 RMS(Int)= 0.01378856 Iteration 4 RMS(Cart)= 0.00000969 RMS(Int)= 0.01378856 Iteration 5 RMS(Cart)= 0.00000022 RMS(Int)= 0.01378856 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.34477 0.26476 0.19982 0.25677 0.45658 2.80135 R2 2.69642 0.01598 -0.05960 0.02637 -0.03323 2.66319 R3 2.45028 0.13354 0.26719 -0.23885 0.02834 2.47863 R4 2.38058 0.19835 0.24298 0.20200 0.44498 2.82557 A1 1.76658 0.02478 0.06877 0.01939 0.08060 1.84718 A2 1.84229 0.00427 0.04618 -0.00434 0.03766 1.87994 A3 1.92963 0.01130 0.03960 -0.14296 -0.09007 1.83956 A4 2.00243 -0.01249 -0.02774 -0.10811 -0.13288 1.86956 A5 3.84472 -0.00822 0.01844 -0.11245 -0.09522 3.74950 A6 3.93206 -0.00118 0.01186 -0.25107 -0.22295 3.70911 A7 2.01519 0.04019 0.16481 -0.25942 -0.06772 1.94746 A8 2.37101 -0.07247 -0.31581 0.28364 -0.01788 2.35313 D1 -1.95344 -0.00912 0.01267 -0.20632 -0.22558 -2.17901 Item Value Threshold Converged? Maximum Force 0.264757 0.000450 NO RMS Force 0.102079 0.000300 NO Maximum Displacement 0.389345 0.001800 NO RMS Displacement 0.167507 0.001200 NO Predicted change in Energy=-6.596637D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.682053 1.414909 0.686501 2 9 0 -1.205200 2.118413 -0.439205 3 9 0 -0.128064 0.005892 -0.881761 4 9 0 -1.367582 0.305543 0.984887 5 5 0 -0.512969 0.951443 -0.058256 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.307348 0.000000 3 F 2.258554 2.412224 0.000000 4 F 2.349623 2.311039 2.260657 0.000000 5 B 1.482410 1.409300 1.311632 1.495225 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -0.104561 -1.164982 0.793661 2 9 0 1.321893 0.012789 -0.585448 3 9 0 -1.069037 -0.027757 -0.902679 4 9 0 -0.142240 1.184171 0.765508 5 5 0 -0.010900 -0.007598 -0.127876 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1719328 5.0148908 4.6817443 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 178.1167397337 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.34D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Lowest energy guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.296283 -0.636250 0.148635 0.696642 Ang=-145.53 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.892560 -0.450260 0.012110 0.021339 Ang= -53.61 deg. Keep R1 ints in memory in canonical form, NReq=1369077. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.468282067 A.U. after 11 cycles NFock= 11 Conv=0.26D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.029420879 -0.009515217 -0.026229009 2 9 0.009185021 -0.021525372 -0.021177200 3 9 0.010483581 -0.036818132 -0.068011329 4 9 0.020484617 0.018041933 -0.035322784 5 5 -0.010732341 0.049816789 0.150740322 ------------------------------------------------------------------- Cartesian Forces: Max 0.150740322 RMS 0.049019493 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.072319261 RMS 0.031347005 Search for a local minimum. Step number 14 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 12 14 DE= -2.57D-04 DEPred=-6.60D-02 R= 3.89D-03 Trust test= 3.89D-03 RLast= 8.23D-01 DXMaxT set to 7.50D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.29764 R2 0.06055 0.15183 R3 -0.04123 0.01484 0.35676 R4 0.04615 0.01733 -0.00314 0.16267 A1 -0.02822 -0.02392 -0.08561 -0.02719 0.20173 A2 -0.01911 0.00309 -0.03784 -0.02576 -0.03715 A3 0.02690 0.04620 -0.01990 -0.03499 0.01455 A4 0.00830 0.04346 0.06267 0.02325 0.00357 A5 -0.00783 -0.02652 0.05516 -0.01732 -0.02713 A6 -0.01165 -0.05891 0.01562 0.00615 0.00558 A7 0.00688 0.00227 -0.02264 0.06818 0.02761 A8 -0.09002 0.03248 0.04121 -0.01739 -0.07253 D1 -0.01991 -0.03095 -0.01494 0.02573 0.00981 A2 A3 A4 A5 A6 A2 0.21752 A3 -0.01065 0.13762 A4 -0.00527 -0.07096 0.21238 A5 -0.00069 -0.02759 0.00644 0.02652 A6 -0.00059 -0.00609 -0.00752 0.00722 0.03611 A7 -0.01322 0.02004 -0.00907 -0.02786 0.01596 A8 -0.00200 -0.07290 0.02379 0.02853 -0.04484 D1 -0.00233 0.00158 -0.00088 -0.00740 0.02170 A7 A8 D1 A7 0.07042 A8 -0.07014 0.18017 D1 0.02959 -0.03691 0.02523 ITU= -1 -1 0 1 1 -1 0 0 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01272 0.03150 0.06394 0.14119 0.17781 Eigenvalues --- 0.24051 0.27523 0.31995 0.48203 RFO step: Lambda=-2.03293866D-02 EMin= 1.27234248D-02 Quartic linear search produced a step of -0.48781. Iteration 1 RMS(Cart)= 0.09730875 RMS(Int)= 0.08802836 Iteration 2 RMS(Cart)= 0.05863082 RMS(Int)= 0.01656834 Iteration 3 RMS(Cart)= 0.01382813 RMS(Int)= 0.00656867 Iteration 4 RMS(Cart)= 0.00006976 RMS(Int)= 0.00656824 Iteration 5 RMS(Cart)= 0.00000029 RMS(Int)= 0.00656824 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.80135 -0.03987 -0.07064 -0.05049 -0.12113 2.68022 R2 2.66319 -0.01661 -0.02915 0.06587 0.03672 2.69991 R3 2.47863 0.07232 0.18953 0.03225 0.22178 2.70041 R4 2.82557 -0.04414 -0.03213 -0.39398 -0.42611 2.39945 A1 1.84718 0.01962 0.01302 -0.03826 -0.00979 1.83739 A2 1.87994 0.00152 0.01678 -0.01126 0.01075 1.89070 A3 1.83956 0.01727 0.07408 -0.17846 -0.10601 1.73355 A4 1.86956 0.00344 0.04370 -0.02033 0.02101 1.89057 A5 3.74950 0.00496 0.06049 -0.03159 0.03177 3.78127 A6 3.70911 0.02071 0.11778 -0.19879 -0.08500 3.62412 A7 1.94746 0.02095 0.15848 0.24002 0.39592 2.34338 A8 2.35313 -0.04506 -0.23165 -0.05666 -0.28291 2.07022 D1 -2.17901 0.01049 0.11968 0.01110 0.14585 -2.03317 Item Value Threshold Converged? Maximum Force 0.072319 0.000450 NO RMS Force 0.031347 0.000300 NO Maximum Displacement 0.309417 0.001800 NO RMS Displacement 0.141244 0.001200 NO Predicted change in Energy=-3.369231D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.707164 1.458469 0.641172 2 9 0 -1.224473 2.043133 -0.382312 3 9 0 -0.143002 -0.019372 -0.914962 4 9 0 -1.381353 0.395128 0.842786 5 5 0 -0.490099 0.918842 0.105481 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.262868 0.000000 3 F 2.308322 2.388980 0.000000 4 F 2.352285 2.059466 2.189749 0.000000 5 B 1.418310 1.428732 1.428994 1.269736 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -0.715097 -1.199148 0.342666 2 9 0 1.026464 -0.355804 -0.830496 3 9 0 -0.954353 0.937512 -0.497448 4 9 0 0.657106 0.612615 0.949149 5 5 0 -0.025416 0.008686 0.065032 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5688711 5.4668730 4.6450531 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 182.9379319838 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.06D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.930011 -0.199712 -0.102327 0.291074 Ang= -43.13 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1369167. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.461910315 A.U. after 12 cycles NFock= 12 Conv=0.21D-08 -V/T= 2.0027 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.011965378 -0.018063877 0.008576036 2 9 0.016638550 0.011210310 -0.026200963 3 9 0.002497325 0.014736412 0.005818699 4 9 -0.077142562 -0.084209678 0.118350845 5 5 0.069972066 0.076326833 -0.106544617 ------------------------------------------------------------------- Cartesian Forces: Max 0.118350845 RMS 0.058316423 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.157604536 RMS 0.048963386 Search for a local minimum. Step number 15 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 15 14 DE= 6.37D-03 DEPred=-3.37D-02 R=-1.89D-01 Trust test=-1.89D-01 RLast= 7.25D-01 DXMaxT set to 3.75D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.29212 R2 0.05461 0.15013 R3 0.02445 0.02858 0.33988 R4 0.05686 0.04029 -0.06660 0.41546 A1 -0.00567 -0.01420 -0.09661 -0.02115 0.18340 A2 -0.00530 0.00855 -0.02781 -0.01357 -0.04378 A3 0.04367 0.05775 -0.07574 0.02062 0.00455 A4 0.00758 0.04320 0.04899 0.01675 0.00260 A5 -0.00481 -0.02631 0.04977 -0.01775 -0.02377 A6 0.00396 -0.04871 -0.03113 0.05019 -0.00464 A7 0.00348 -0.00356 -0.00499 -0.00525 0.02103 A8 -0.11665 0.02222 0.08126 -0.00593 -0.05222 D1 -0.02311 -0.03099 -0.03615 0.01690 0.00405 A2 A3 A4 A5 A6 A2 0.21663 A3 -0.01137 0.13500 A4 -0.00603 -0.07524 0.21194 A5 0.00270 -0.03090 0.00451 0.02446 A6 -0.00213 -0.00962 -0.01098 0.00485 0.03189 A7 -0.02033 0.00452 -0.00587 -0.02626 0.00321 A8 0.00466 -0.04974 0.02702 0.02976 -0.02391 D1 -0.00718 -0.00300 0.00007 -0.00884 0.01760 A7 A8 D1 A7 0.09044 A8 -0.07144 0.15033 D1 0.03295 -0.03114 0.02805 ITU= -1 -1 -1 0 1 1 -1 0 0 1 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.02226 0.05022 0.07770 0.12806 0.15354 Eigenvalues --- 0.24818 0.33958 0.39761 0.52989 RFO step: Lambda=-5.97755904D-02 EMin= 2.22558075D-02 Quartic linear search produced a step of -0.51487. Maximum step size ( 0.375) exceeded in Quadratic search. -- Step size scaled by 0.488 Iteration 1 RMS(Cart)= 0.13681342 RMS(Int)= 0.02460626 Iteration 2 RMS(Cart)= 0.02133867 RMS(Int)= 0.00543199 Iteration 3 RMS(Cart)= 0.00037475 RMS(Int)= 0.00542154 Iteration 4 RMS(Cart)= 0.00000134 RMS(Int)= 0.00542154 Iteration 5 RMS(Cart)= 0.00000001 RMS(Int)= 0.00542154 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.68022 -0.01373 0.06237 -0.13972 -0.07736 2.60286 R2 2.69991 0.00921 -0.01891 0.02355 0.00464 2.70455 R3 2.70041 -0.01322 -0.11419 0.14630 0.03211 2.73252 R4 2.39945 0.15760 0.21939 0.05938 0.27877 2.67822 A1 1.83739 0.01124 0.00504 0.08011 0.09508 1.93247 A2 1.89070 0.00726 -0.00554 0.04044 0.03870 1.92940 A3 1.73355 0.04682 0.05458 0.13841 0.19839 1.93194 A4 1.89057 -0.00441 -0.01082 0.02796 0.01423 1.90480 A5 3.78127 0.00285 -0.01636 0.06840 0.05293 3.83420 A6 3.62412 0.04241 0.04376 0.16637 0.21262 3.83674 A7 2.34338 -0.03832 -0.20385 -0.06141 -0.25401 2.08937 A8 2.07022 -0.01458 0.14566 -0.17747 -0.02240 2.04782 D1 -2.03317 -0.00033 -0.07509 0.00719 -0.07095 -2.10412 Item Value Threshold Converged? Maximum Force 0.157605 0.000450 NO RMS Force 0.048963 0.000300 NO Maximum Displacement 0.337691 0.001800 NO RMS Displacement 0.156773 0.001200 NO Predicted change in Energy=-4.505977D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.645874 1.402542 0.710951 2 9 0 -1.185581 2.065829 -0.532565 3 9 0 -0.167460 0.041145 -0.983496 4 9 0 -1.327876 0.317974 1.021484 5 5 0 -0.496720 0.968710 0.075791 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.310954 0.000000 3 F 2.320790 2.310683 0.000000 4 F 2.273413 2.343142 2.333055 0.000000 5 B 1.377375 1.431187 1.445987 1.417255 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -0.614486 -0.312328 -1.216545 2 9 0 0.864907 -1.064137 0.391774 3 9 0 0.785007 1.185735 -0.128751 4 9 0 -1.026027 0.197327 0.960447 5 5 0 -0.016923 -0.011873 -0.012465 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0692791 4.9560705 4.8633491 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 178.2845519455 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.45D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Lowest energy guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.557600 -0.528255 0.538914 0.345833 Ang=-112.22 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.669690 -0.186517 0.642716 0.321936 Ang= -95.91 deg. Keep R1 ints in memory in canonical form, NReq=1369133. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.489686593 A.U. after 10 cycles NFock= 10 Conv=0.37D-08 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.012851338 0.005995572 0.003857287 2 9 0.009798881 -0.015820711 0.014102175 3 9 -0.004544205 0.017399455 0.024000739 4 9 0.005236659 0.007633333 -0.011275860 5 5 -0.023342673 -0.015207648 -0.030684341 ------------------------------------------------------------------- Cartesian Forces: Max 0.030684341 RMS 0.015472794 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.029778294 RMS 0.012249559 Search for a local minimum. Step number 16 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 12 15 14 16 DE= -2.14D-02 DEPred=-4.51D-02 R= 4.75D-01 Trust test= 4.75D-01 RLast= 5.38D-01 DXMaxT set to 3.75D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.32693 R2 -0.05202 0.18500 R3 -0.06384 -0.00493 0.36453 R4 -0.00900 0.06160 0.03104 0.42679 A1 0.02377 0.01020 -0.02357 0.00948 0.17209 A2 0.00218 0.01295 -0.00355 0.00788 -0.04242 A3 0.02978 0.08114 -0.00815 0.06692 0.00819 A4 0.00434 0.03472 0.04431 0.02374 0.00458 A5 -0.02975 -0.03212 0.03584 -0.00155 -0.01115 A6 -0.03608 -0.03100 0.02466 0.08581 0.00859 A7 0.02852 0.00240 0.00287 -0.05416 0.00774 A8 -0.08775 0.01310 0.00888 -0.02923 -0.06710 D1 -0.01370 -0.01759 -0.01136 0.00463 -0.00681 A2 A3 A4 A5 A6 A2 0.21752 A3 -0.00794 0.15871 A4 -0.00830 -0.07049 0.21342 A5 0.00399 -0.02048 0.00278 0.01899 A6 0.00428 0.02216 -0.00652 0.01387 0.06282 A7 -0.01569 -0.01003 -0.00172 -0.01717 -0.01745 A8 -0.00685 -0.08420 0.01965 0.01659 -0.05127 D1 -0.00687 -0.00416 0.00534 0.00046 0.01757 A7 A8 D1 A7 0.05847 A8 -0.03310 0.16770 D1 0.01167 -0.02240 0.01738 ITU= 0 -1 -1 -1 0 1 1 -1 0 0 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.04034 0.07075 0.07882 0.15437 0.21197 Eigenvalues --- 0.24577 0.32301 0.45856 0.50494 RFO step: Lambda=-3.64412778D-03 EMin= 4.03415979D-02 Quartic linear search produced a step of -0.18734. Iteration 1 RMS(Cart)= 0.03929430 RMS(Int)= 0.00111590 Iteration 2 RMS(Cart)= 0.00079369 RMS(Int)= 0.00087055 Iteration 3 RMS(Cart)= 0.00000047 RMS(Int)= 0.00087055 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.60286 0.01433 0.03718 -0.01310 0.02409 2.62695 R2 2.70455 -0.02284 -0.00775 -0.10953 -0.11728 2.58727 R3 2.73252 -0.02978 -0.04756 -0.03174 -0.07930 2.65321 R4 2.67822 -0.01410 0.02760 -0.03386 -0.00626 2.67196 A1 1.93247 -0.00343 -0.01598 -0.01246 -0.02647 1.90601 A2 1.92940 -0.00288 -0.00927 -0.01954 -0.02809 1.90132 A3 1.93194 -0.00579 -0.01731 0.01895 0.00234 1.93428 A4 1.90480 0.00056 -0.00660 0.00822 0.00113 1.90593 A5 3.83420 -0.00231 -0.01587 -0.01133 -0.02696 3.80724 A6 3.83674 -0.00523 -0.02391 0.02717 0.00346 3.84020 A7 2.08937 0.00331 -0.02658 0.02543 0.00036 2.08972 A8 2.04782 0.00628 0.05720 -0.01084 0.04788 2.09570 D1 -2.10412 0.00110 -0.01403 0.03986 0.02595 -2.07817 Item Value Threshold Converged? Maximum Force 0.029778 0.000450 NO RMS Force 0.012250 0.000300 NO Maximum Displacement 0.058293 0.001800 NO RMS Displacement 0.039319 0.001200 NO Predicted change in Energy=-3.008887D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.647681 1.412569 0.683318 2 9 0 -1.159396 2.036524 -0.501717 3 9 0 -0.166461 0.059885 -0.953130 4 9 0 -1.340931 0.318836 1.003884 5 5 0 -0.512656 0.968387 0.059810 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.249257 0.000000 3 F 2.273882 2.257608 0.000000 4 F 2.292071 2.291341 2.297028 0.000000 5 B 1.390123 1.369125 1.404021 1.413943 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.408485 -1.018689 -0.850149 2 9 0 0.520248 -0.236380 1.255714 3 9 0 0.484276 1.221513 -0.467669 4 9 0 -1.412837 0.037127 0.056289 5 5 0 -0.000309 -0.006428 0.010465 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2071109 5.1257884 5.0618206 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 181.2859469696 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.20D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.888439 0.286730 0.309287 -0.181115 Ang= 54.64 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1369133. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.491234842 A.U. after 9 cycles NFock= 9 Conv=0.61D-08 -V/T= 2.0033 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.009649518 0.002574030 0.008098851 2 9 -0.017383016 0.021595540 -0.009275667 3 9 -0.000427314 -0.003593403 -0.000587047 4 9 0.003306803 0.004608435 -0.004997363 5 5 0.004854010 -0.025184602 0.006761226 ------------------------------------------------------------------- Cartesian Forces: Max 0.025184602 RMS 0.010936272 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.028863573 RMS 0.009265249 Search for a local minimum. Step number 17 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 13 12 15 14 16 17 DE= -1.55D-03 DEPred=-3.01D-03 R= 5.15D-01 TightC=F SS= 1.41D+00 RLast= 1.61D-01 DXNew= 6.3067D-01 4.8248D-01 Trust test= 5.15D-01 RLast= 1.61D-01 DXMaxT set to 4.82D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.39163 R2 0.01958 0.41217 R3 0.01121 0.04758 0.32089 R4 0.03317 0.02465 -0.00251 0.43854 A1 0.01862 -0.00086 -0.01125 0.02156 0.16203 A2 -0.01477 0.01079 -0.03022 -0.00942 -0.04536 A3 -0.00108 0.02585 -0.05042 0.06722 0.00252 A4 -0.01493 0.00779 -0.01017 0.01061 0.01013 A5 -0.01964 -0.00337 0.05443 -0.00945 -0.01137 A6 -0.04319 -0.04598 0.04037 0.09290 0.00545 A7 0.05586 -0.03911 -0.00552 -0.02126 0.01628 A8 -0.09197 0.03380 -0.02549 -0.06664 -0.05756 D1 -0.00470 -0.04745 -0.00562 0.02650 -0.00307 A2 A3 A4 A5 A6 A2 0.21114 A3 -0.01702 0.16237 A4 -0.01719 -0.06725 0.20362 A5 0.00910 -0.02496 0.00217 0.02250 A6 0.01078 0.03078 0.00687 0.00850 0.05502 A7 -0.02371 -0.00027 -0.00363 -0.02615 -0.01208 A8 -0.00426 -0.08673 0.00627 0.02324 -0.04170 D1 -0.00409 0.01062 0.01595 -0.00883 0.01572 A7 A8 D1 A7 0.08565 A8 -0.05943 0.15796 D1 0.02709 -0.03194 0.02228 ITU= 1 0 -1 -1 -1 0 1 1 -1 0 0 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.04324 0.07674 0.08410 0.19716 0.23891 Eigenvalues --- 0.32840 0.42058 0.45010 0.53376 RFO step: Lambda=-1.58098158D-03 EMin= 4.32374245D-02 Quartic linear search produced a step of -0.32676. Iteration 1 RMS(Cart)= 0.02253217 RMS(Int)= 0.00014488 Iteration 2 RMS(Cart)= 0.00014714 RMS(Int)= 0.00004145 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00004145 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.62695 0.01251 -0.00787 0.04839 0.04052 2.66747 R2 2.58727 0.02886 0.03832 0.02957 0.06789 2.65516 R3 2.65321 0.00264 0.02591 -0.03762 -0.01171 2.64151 R4 2.67196 -0.00739 0.00205 -0.03022 -0.02818 2.64379 A1 1.90601 0.00077 0.00865 -0.00817 0.00043 1.90644 A2 1.90132 0.00161 0.00918 -0.00404 0.00513 1.90645 A3 1.93428 -0.00393 -0.00076 0.00246 0.00174 1.93601 A4 1.90593 0.00013 -0.00037 0.02186 0.02149 1.92742 A5 3.80724 0.00174 0.00881 0.01782 0.02662 3.83386 A6 3.84020 -0.00380 -0.00113 0.02432 0.02323 3.86343 A7 2.08972 -0.00198 -0.00012 -0.01262 -0.01266 2.07706 A8 2.09570 0.00263 -0.01565 0.02426 0.00863 2.10433 D1 -2.07817 -0.00422 -0.00848 0.00813 -0.00046 -2.07863 Item Value Threshold Converged? Maximum Force 0.028864 0.000450 NO RMS Force 0.009265 0.000300 NO Maximum Displacement 0.037558 0.001800 NO RMS Displacement 0.022555 0.001200 NO Predicted change in Energy=-1.370312D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.655815 1.404911 0.703193 2 9 0 -1.177635 2.052452 -0.518430 3 9 0 -0.167190 0.059188 -0.957515 4 9 0 -1.326843 0.324785 1.007505 5 5 0 -0.515910 0.954864 0.057412 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.296347 0.000000 3 F 2.290471 2.277476 0.000000 4 F 2.278203 2.309886 2.297094 0.000000 5 B 1.411564 1.405053 1.397826 1.399031 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -0.595720 -1.021959 -0.750342 2 9 0 0.983452 -0.543180 0.846591 3 9 0 0.611136 0.921851 -0.856924 4 9 0 -0.999269 0.638457 0.756435 5 5 0 0.000722 0.008694 0.007632 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1321840 5.0377498 5.0276098 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 180.1058472133 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.31D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.931622 0.025285 -0.281909 0.227966 Ang= 42.62 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1369133. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.492194763 A.U. after 9 cycles NFock= 9 Conv=0.31D-08 -V/T= 2.0034 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.003785635 -0.000705739 -0.003094349 2 9 -0.001528687 -0.002151033 0.003545071 3 9 -0.000374287 -0.004176726 -0.001170539 4 9 -0.003885405 -0.000322859 -0.001854337 5 5 0.009574014 0.007356357 0.002574153 ------------------------------------------------------------------- Cartesian Forces: Max 0.009574014 RMS 0.003949126 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.005459644 RMS 0.002814602 Search for a local minimum. Step number 18 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 13 12 15 14 16 17 18 DE= -9.60D-04 DEPred=-1.37D-03 R= 7.01D-01 TightC=F SS= 1.41D+00 RLast= 9.57D-02 DXNew= 8.1142D-01 2.8708D-01 Trust test= 7.01D-01 RLast= 9.57D-02 DXMaxT set to 4.82D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.42552 R2 0.03676 0.44104 R3 0.01145 0.02861 0.35093 R4 0.01779 0.03457 -0.02122 0.43132 A1 0.02887 0.01677 -0.02634 0.00448 0.15726 A2 -0.01069 -0.00137 -0.00817 -0.01205 -0.04635 A3 0.01332 0.03309 -0.05023 0.05408 -0.00085 A4 -0.01478 -0.02042 0.03188 0.03291 0.01677 A5 -0.00400 0.01668 0.02764 -0.03000 -0.00874 A6 -0.00512 0.01382 -0.03689 0.04078 0.00590 A7 0.04275 -0.04791 0.00239 -0.00071 0.01428 A8 -0.08218 0.01693 -0.01063 -0.06684 -0.04673 D1 -0.00703 -0.03395 -0.02873 0.02816 -0.00381 A2 A3 A4 A5 A6 A2 0.21270 A3 -0.02201 0.15158 A4 -0.02314 -0.07521 0.17301 A5 0.01433 -0.01622 0.01637 0.01725 A6 0.01177 0.03661 0.02998 0.00168 0.04121 A7 -0.02994 -0.00580 -0.00991 -0.02804 -0.01476 A8 0.00124 -0.07733 0.00176 0.02349 -0.03585 D1 -0.00872 0.01056 0.01865 -0.01288 0.01324 A7 A8 D1 A7 0.09642 A8 -0.06419 0.14355 D1 0.03442 -0.03634 0.02844 ITU= 1 1 0 -1 -1 -1 0 1 1 -1 0 0 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.05957 0.08342 0.10527 0.19871 0.23231 Eigenvalues --- 0.35317 0.43126 0.45727 0.53274 RFO step: Lambda=-6.07648373D-04 EMin= 5.95747637D-02 Quartic linear search produced a step of -0.20952. Iteration 1 RMS(Cart)= 0.02205521 RMS(Int)= 0.00048498 Iteration 2 RMS(Cart)= 0.00048347 RMS(Int)= 0.00014244 Iteration 3 RMS(Cart)= 0.00000015 RMS(Int)= 0.00014244 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.66747 -0.00478 -0.00849 -0.01036 -0.01885 2.64862 R2 2.65516 -0.00241 -0.01423 0.01464 0.00041 2.65558 R3 2.64151 0.00343 0.00245 -0.00175 0.00070 2.64221 R4 2.64379 0.00114 0.00590 0.00855 0.01445 2.65824 A1 1.90644 -0.00123 -0.00009 0.00474 0.00485 1.91129 A2 1.90645 0.00011 -0.00108 0.00713 0.00613 1.91258 A3 1.93601 -0.00414 -0.00036 -0.03902 -0.03923 1.89678 A4 1.92742 -0.00132 -0.00450 -0.01821 -0.02277 1.90464 A5 3.83386 -0.00121 -0.00558 -0.01108 -0.01664 3.81722 A6 3.86343 -0.00546 -0.00487 -0.05723 -0.06201 3.80142 A7 2.07706 0.00280 0.00265 0.02507 0.02804 2.10510 A8 2.10433 0.00105 -0.00181 -0.01248 -0.01405 2.09029 D1 -2.07863 -0.00075 0.00010 -0.02170 -0.02175 -2.10038 Item Value Threshold Converged? Maximum Force 0.005460 0.000450 NO RMS Force 0.002815 0.000300 NO Maximum Displacement 0.035883 0.001800 NO RMS Displacement 0.022013 0.001200 NO Predicted change in Energy=-3.590181D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.664237 1.411162 0.691594 2 9 0 -1.186595 2.051943 -0.499442 3 9 0 -0.164386 0.047526 -0.947601 4 9 0 -1.343817 0.326580 0.989856 5 5 0 -0.501202 0.958989 0.057758 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.292323 0.000000 3 F 2.287592 2.294220 0.000000 4 F 2.301643 2.284646 2.285315 0.000000 5 B 1.401591 1.405270 1.398198 1.406679 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -1.198633 -0.348460 0.646786 2 9 0 0.474087 -1.101096 -0.728093 3 9 0 -0.238609 1.075342 -0.864578 4 9 0 0.966247 0.373539 0.946074 5 5 0 -0.005566 0.001217 -0.000342 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0952872 5.0735816 5.0363822 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 180.1547224172 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.30D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.706859 -0.115090 -0.646697 0.262464 Ang= -90.04 deg. ExpMin= 1.24D-01 ExpMax= 4.14D+02 ExpMxC= 4.14D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=1369133. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.492392032 A.U. after 8 cycles NFock= 8 Conv=0.65D-08 -V/T= 2.0034 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.000454174 -0.000393398 0.000684260 2 9 0.002077573 -0.000966394 -0.000361183 3 9 0.001244343 -0.001204090 -0.002697018 4 9 0.003177515 0.001040400 -0.000152657 5 5 -0.006045256 0.001523481 0.002526598 ------------------------------------------------------------------- Cartesian Forces: Max 0.006045256 RMS 0.002205058 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003023943 RMS 0.001583200 Search for a local minimum. Step number 19 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 12 15 14 16 17 18 19 DE= -1.97D-04 DEPred=-3.59D-04 R= 5.49D-01 TightC=F SS= 1.41D+00 RLast= 9.09D-02 DXNew= 8.1142D-01 2.7269D-01 Trust test= 5.49D-01 RLast= 9.09D-02 DXMaxT set to 4.82D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.37777 R2 0.05854 0.44371 R3 -0.02439 0.02346 0.35514 R4 -0.00414 0.05936 -0.04265 0.40323 A1 0.03172 0.00268 -0.01193 0.01630 0.16153 A2 -0.00657 -0.01456 0.00644 -0.00999 -0.04762 A3 0.00434 0.02650 -0.03511 0.01648 0.01690 A4 -0.02344 -0.01575 0.02852 -0.00043 0.01962 A5 -0.00255 0.01301 0.03403 -0.02664 -0.00468 A6 0.00125 -0.00805 -0.00269 0.03644 0.02824 A7 0.03898 -0.03720 -0.01745 0.00943 0.01054 A8 -0.06204 -0.00066 0.00703 -0.03695 -0.06027 D1 -0.00819 -0.03509 -0.02686 0.02932 0.00158 A2 A3 A4 A5 A6 A2 0.21382 A3 -0.01180 0.13937 A4 -0.01798 -0.09747 0.15671 A5 0.01676 -0.00860 0.01969 0.01692 A6 0.01840 0.05355 0.01864 0.01101 0.08783 A7 -0.03726 -0.00989 -0.01399 -0.02778 -0.01980 A8 -0.00221 -0.05100 0.03097 0.01841 -0.04157 D1 -0.01019 0.01151 0.01075 -0.00940 0.02583 A7 A8 D1 A7 0.09909 A8 -0.07031 0.11672 D1 0.03407 -0.03708 0.03283 ITU= 1 1 1 0 -1 -1 -1 0 1 1 -1 0 0 1 Use linear search instead of GDIIS. Eigenvalues --- 0.06797 0.08331 0.14270 0.20859 0.24330 Eigenvalues --- 0.31324 0.39885 0.43801 0.52158 RFO step: Lambda=-4.51415964D-05 EMin= 6.79688986D-02 Quartic linear search produced a step of -0.31617. Iteration 1 RMS(Cart)= 0.00763807 RMS(Int)= 0.00005945 Iteration 2 RMS(Cart)= 0.00005067 RMS(Int)= 0.00003127 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003127 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64862 -0.00020 0.00596 -0.00304 0.00292 2.65154 R2 2.65558 -0.00162 -0.00013 -0.00443 -0.00456 2.65101 R3 2.64221 0.00302 -0.00022 0.00913 0.00891 2.65112 R4 2.65824 -0.00247 -0.00457 -0.00182 -0.00639 2.65185 A1 1.91129 0.00032 -0.00153 0.00044 -0.00114 1.91015 A2 1.91258 0.00039 -0.00194 0.00014 -0.00182 1.91076 A3 1.89678 0.00195 0.01240 0.00206 0.01443 1.91121 A4 1.90464 0.00053 0.00720 -0.00203 0.00519 1.90983 A5 3.81722 0.00092 0.00526 -0.00189 0.00337 3.82059 A6 3.80142 0.00248 0.01961 0.00003 0.01962 3.82103 A7 2.10510 -0.00181 -0.00886 -0.00215 -0.01108 2.09402 A8 2.09029 -0.00004 0.00444 0.00026 0.00465 2.09493 D1 -2.10038 0.00014 0.00688 -0.00075 0.00615 -2.09423 Item Value Threshold Converged? Maximum Force 0.003024 0.000450 NO RMS Force 0.001583 0.000300 NO Maximum Displacement 0.012439 0.001800 NO RMS Displacement 0.007636 0.001200 NO Predicted change in Energy=-7.578510D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.659646 1.409624 0.695682 2 9 0 -1.182678 2.052116 -0.504448 3 9 0 -0.165051 0.048695 -0.952805 4 9 0 -1.337234 0.326383 0.995471 5 5 0 -0.506446 0.959383 0.058266 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.290691 0.000000 3 F 2.291236 2.291351 0.000000 4 F 2.291466 2.291680 2.290612 0.000000 5 B 1.403135 1.402855 1.402914 1.403300 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 -0.712715 1.173347 -0.289395 2 9 0 -0.891047 -0.991613 0.437526 3 9 0 0.662057 -0.442308 -1.155088 4 9 0 0.941782 0.260699 1.006957 5 5 0 -0.000136 -0.000224 0.000001 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0697708 5.0663320 5.0660730 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 180.1373743803 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.30D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.727839 0.441025 0.168110 0.497480 Ang= 86.59 deg. Keep R1 ints in memory in canonical form, NReq=1369133. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.492468173 A.U. after 8 cycles NFock= 8 Conv=0.53D-08 -V/T= 2.0034 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 -0.000419691 -0.000203647 -0.000217452 2 9 0.000102238 -0.000344752 0.000127875 3 9 -0.000069305 0.000316974 0.000196291 4 9 0.000333283 0.000395974 -0.000397705 5 5 0.000053475 -0.000164550 0.000290991 ------------------------------------------------------------------- Cartesian Forces: Max 0.000419691 RMS 0.000270187 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000641538 RMS 0.000279291 Search for a local minimum. Step number 20 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 11 13 12 15 14 16 17 18 19 20 DE= -7.61D-05 DEPred=-7.58D-05 R= 1.00D+00 TightC=F SS= 1.41D+00 RLast= 3.11D-02 DXNew= 8.1142D-01 9.3320D-02 Trust test= 1.00D+00 RLast= 3.11D-02 DXMaxT set to 4.82D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.41565 R2 0.02839 0.44779 R3 0.02920 0.02106 0.39761 R4 -0.00353 0.03317 -0.01324 0.39469 A1 0.01976 0.01081 -0.01549 0.00233 0.14890 A2 -0.00893 -0.00999 0.00999 -0.02243 -0.04987 A3 0.00643 0.02521 -0.02353 0.02779 0.01155 A4 -0.01266 -0.02223 0.02911 0.01638 0.02634 A5 0.00127 0.01783 0.03148 -0.01895 -0.00165 A6 -0.00962 0.00387 -0.00840 0.03683 0.02128 A7 0.04037 -0.04536 -0.01972 0.00618 0.00451 A8 -0.07171 0.01142 -0.00462 -0.06247 -0.04656 D1 -0.01688 -0.03475 -0.02904 0.02366 -0.00327 A2 A3 A4 A5 A6 A2 0.21603 A3 -0.01205 0.14096 A4 -0.01755 -0.09556 0.15130 A5 0.01843 -0.00839 0.01725 0.01466 A6 0.01647 0.05341 0.02083 0.01095 0.08556 A7 -0.04313 -0.01203 -0.00931 -0.02535 -0.02347 A8 0.00678 -0.05140 0.02156 0.01744 -0.03839 D1 -0.01364 0.01280 0.01332 -0.00737 0.02759 A7 A8 D1 A7 0.10010 A8 -0.07573 0.13136 D1 0.03089 -0.03786 0.03339 ITU= 1 1 1 1 0 -1 -1 -1 0 1 1 -1 0 0 Use linear search instead of GDIIS. Eigenvalues --- 0.06776 0.08544 0.14008 0.20200 0.24830 Eigenvalues --- 0.37281 0.43706 0.44912 0.49404 RFO step: Lambda=-3.20929694D-06 EMin= 6.77563156D-02 Quartic linear search produced a step of 0.00248. Iteration 1 RMS(Cart)= 0.00124380 RMS(Int)= 0.00000070 Iteration 2 RMS(Cart)= 0.00000057 RMS(Int)= 0.00000015 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65154 -0.00051 0.00001 -0.00155 -0.00154 2.65000 R2 2.65101 -0.00037 -0.00001 -0.00053 -0.00054 2.65047 R3 2.65112 -0.00036 0.00002 -0.00111 -0.00109 2.65004 R4 2.65185 -0.00064 -0.00002 -0.00179 -0.00180 2.65005 A1 1.91015 0.00011 0.00000 0.00141 0.00140 1.91156 A2 1.91076 -0.00007 0.00000 0.00045 0.00045 1.91121 A3 1.91121 -0.00011 0.00004 -0.00071 -0.00068 1.91053 A4 1.90983 0.00015 0.00001 0.00094 0.00096 1.91079 A5 3.82059 0.00008 0.00001 0.00140 0.00140 3.82200 A6 3.82103 0.00005 0.00005 0.00023 0.00028 3.82131 A7 2.09402 0.00004 -0.00003 0.00031 0.00028 2.09430 A8 2.09493 -0.00007 0.00001 -0.00187 -0.00186 2.09307 D1 -2.09423 -0.00005 0.00002 -0.00099 -0.00098 -2.09520 Item Value Threshold Converged? Maximum Force 0.000642 0.000450 NO RMS Force 0.000279 0.000300 YES Maximum Displacement 0.002263 0.001800 NO RMS Displacement 0.001244 0.001200 NO Predicted change in Energy=-1.605014D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.659258 1.408793 0.696081 2 9 0 -1.182973 2.050919 -0.504843 3 9 0 -0.165345 0.049785 -0.952965 4 9 0 -1.336608 0.327392 0.995321 5 5 0 -0.506096 0.959312 0.058571 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.290930 0.000000 3 F 2.290464 2.289305 0.000000 4 F 2.289640 2.290118 2.290139 0.000000 5 B 1.402320 1.402570 1.402340 1.402345 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.044735 0.770688 0.531028 2 9 0 -0.895639 -0.343391 1.023102 3 9 0 -0.674878 0.739730 -0.981650 4 9 0 0.525641 -1.167131 -0.572534 5 5 0 0.000253 0.000187 0.000099 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0751632 5.0711695 5.0700963 Standard basis: 3-21G (6D, 7F) There are 45 symmetry adapted cartesian basis functions of A symmetry. There are 45 symmetry adapted basis functions of A symmetry. 45 basis functions, 75 primitive gaussians, 45 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 180.2217969079 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 45 RedAO= T EigKep= 7.30D-02 NBF= 45 NBsUse= 45 1.00D-06 EigRej= -1.00D+00 NBFU= 45 Initial guess from the checkpoint file: "bf4.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.631925 -0.346455 -0.466487 0.512864 Ang=-101.62 deg. Keep R1 ints in memory in canonical form, NReq=1369133. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -420.492468788 A.U. after 7 cycles NFock= 7 Conv=0.77D-08 -V/T= 2.0034 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 9 0.000160100 0.000127536 -0.000015362 2 9 0.000048544 0.000166797 0.000096103 3 9 0.000170736 -0.000209187 -0.000091105 4 9 -0.000148261 -0.000119095 0.000147956 5 5 -0.000231118 0.000033949 -0.000137592 ------------------------------------------------------------------- Cartesian Forces: Max 0.000231118 RMS 0.000140074 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000262527 RMS 0.000148525 Search for a local minimum. Step number 21 out of a maximum of 23 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 11 13 12 15 14 16 17 18 19 20 21 DE= -6.14D-07 DEPred=-1.61D-06 R= 3.83D-01 Trust test= 3.83D-01 RLast= 4.15D-03 DXMaxT set to 4.82D-01 The second derivative matrix: R1 R2 R3 R4 A1 R1 0.42681 R2 0.02394 0.44029 R3 0.05669 0.03688 0.42022 R4 0.00807 0.02943 0.02509 0.41109 A1 0.02866 0.01260 -0.01923 0.00654 0.14282 A2 0.00754 -0.00130 0.01683 -0.00378 -0.05662 A3 -0.00971 0.01379 -0.02758 0.00552 0.01644 A4 -0.00577 -0.01174 0.02353 0.02895 0.02262 A5 -0.01858 0.00585 0.01450 -0.04605 0.00713 A6 -0.01368 -0.00137 -0.01574 0.02710 0.02130 A7 0.05041 -0.04311 -0.01265 0.01513 0.00311 A8 -0.02708 0.04082 0.02211 -0.00066 -0.06235 D1 0.01338 -0.01417 -0.00871 0.06599 -0.01924 A2 A3 A4 A5 A6 A2 0.21379 A3 -0.01008 0.13693 A4 -0.02382 -0.08788 0.14418 A5 0.01761 -0.00611 0.02161 0.02167 A6 0.01263 0.05537 0.02175 0.01797 0.08667 A7 -0.04278 -0.01207 -0.01106 -0.02662 -0.02652 A8 0.00714 -0.05005 0.00609 0.00289 -0.04995 D1 -0.01677 0.01314 0.00407 -0.01343 0.01707 A7 A8 D1 A7 0.09972 A8 -0.07284 0.15185 D1 0.03015 -0.02585 0.03440 ITU= 0 1 1 1 1 0 -1 -1 -1 0 1 1 -1 0 Eigenvalues --- 0.07050 0.09658 0.14563 0.24105 0.24198 Eigenvalues --- 0.38358 0.42580 0.44325 0.52136 En-DIIS/RFO-DIIS IScMMF= 0 using points: 21 20 RFO step: Lambda=-5.30317538D-07. DidBck=T Rises=F RFO-DIIS coefs: 0.61784 0.38216 Iteration 1 RMS(Cart)= 0.00079438 RMS(Int)= 0.00000035 Iteration 2 RMS(Cart)= 0.00000030 RMS(Int)= 0.00000013 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65000 0.00017 0.00059 -0.00018 0.00041 2.65041 R2 2.65047 0.00007 0.00021 -0.00017 0.00004 2.65051 R3 2.65004 0.00024 0.00041 0.00006 0.00048 2.65052 R4 2.65005 0.00024 0.00069 -0.00043 0.00026 2.65031 A1 1.91156 -0.00018 -0.00054 -0.00066 -0.00119 1.91036 A2 1.91121 -0.00007 -0.00017 -0.00057 -0.00074 1.91047 A3 1.91053 -0.00006 0.00026 -0.00008 0.00018 1.91071 A4 1.91079 -0.00002 -0.00037 0.00033 -0.00004 1.91075 A5 3.82200 -0.00009 -0.00054 -0.00024 -0.00078 3.82122 A6 3.82131 -0.00008 -0.00011 0.00025 0.00014 3.82146 A7 2.09430 0.00004 -0.00011 0.00040 0.00029 2.09459 A8 2.09307 0.00026 0.00071 0.00080 0.00151 2.09458 D1 -2.09520 0.00011 0.00037 0.00083 0.00120 -2.09400 Item Value Threshold Converged? Maximum Force 0.000263 0.000450 YES RMS Force 0.000149 0.000300 YES Maximum Displacement 0.001213 0.001800 YES RMS Displacement 0.000794 0.001200 YES Predicted change in Energy=-5.494945D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,5) 1.4023 -DE/DX = 0.0002 ! ! R2 R(2,5) 1.4026 -DE/DX = 0.0001 ! ! R3 R(3,5) 1.4023 -DE/DX = 0.0002 ! ! R4 R(4,5) 1.4023 -DE/DX = 0.0002 ! ! A1 A(1,5,2) 109.5241 -DE/DX = -0.0002 ! ! A2 A(1,5,3) 109.5044 -DE/DX = -0.0001 ! ! A3 A(2,5,4) 109.4651 -DE/DX = -0.0001 ! ! A4 A(3,5,4) 109.48 -DE/DX = 0.0 ! ! A5 L(1,5,4,3,-1) 218.9844 -DE/DX = -0.0001 ! ! A6 L(2,5,3,4,-1) 218.9451 -DE/DX = -0.0001 ! ! A7 L(1,5,4,3,-2) 119.9945 -DE/DX = 0.0 ! ! A8 L(2,5,3,4,-2) 119.9241 -DE/DX = 0.0003 ! ! D1 D(1,5,3,2) -120.0463 -DE/DX = 0.0001 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 0.659258 1.408793 0.696081 2 9 0 -1.182973 2.050919 -0.504843 3 9 0 -0.165345 0.049785 -0.952965 4 9 0 -1.336608 0.327392 0.995321 5 5 0 -0.506096 0.959312 0.058571 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 F 0.000000 2 F 2.290930 0.000000 3 F 2.290464 2.289305 0.000000 4 F 2.289640 2.290118 2.290139 0.000000 5 B 1.402320 1.402570 1.402340 1.402345 0.000000 Stoichiometry BF4(1-) Framework group C1[X(BF4)] Deg. of freedom 9 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 9 0 1.044735 0.770688 0.531028 2 9 0 -0.895639 -0.343391 1.023102 3 9 0 -0.674878 0.739730 -0.981650 4 9 0 0.525641 -1.167131 -0.572534 5 5 0 0.000253 0.000187 0.000099 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0751632 5.0711695 5.0700963 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -25.88600 -25.88491 -25.88481 -25.88477 -7.45669 Alpha occ. eigenvalues -- -1.36518 -1.29912 -1.29900 -1.29891 -0.54804 Alpha occ. eigenvalues -- -0.47980 -0.47972 -0.47968 -0.39118 -0.39107 Alpha occ. eigenvalues -- -0.35818 -0.35812 -0.35807 -0.33772 -0.33770 Alpha occ. eigenvalues -- -0.33762 Alpha virt. eigenvalues -- 0.67100 0.67849 0.67859 0.67888 0.98839 Alpha virt. eigenvalues -- 0.98857 0.98880 1.16242 2.37188 2.37225 Alpha virt. eigenvalues -- 2.59771 2.59787 2.59800 2.61885 2.61920 Alpha virt. eigenvalues -- 2.61935 2.66170 2.80293 2.80323 2.80327 Alpha virt. eigenvalues -- 4.18720 4.18744 4.18795 4.78264 Condensed to atoms (all electrons): 1 2 3 4 5 1 F 9.304558 -0.012786 -0.012809 -0.012855 0.258652 2 F -0.012786 9.304806 -0.012872 -0.012827 0.258602 3 F -0.012809 -0.012872 9.304720 -0.012824 0.258642 4 F -0.012855 -0.012827 -0.012824 9.304725 0.258641 5 B 0.258652 0.258602 0.258642 0.258641 2.866062 Mulliken charges: 1 1 F -0.524760 2 F -0.524923 3 F -0.524857 4 F -0.524860 5 B 1.099400 Sum of Mulliken charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 F -0.524760 2 F -0.524923 3 F -0.524857 4 F -0.524860 5 B 1.099400 Electronic spatial extent (au): = 319.6188 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0025 Y= 0.0017 Z= 0.0006 Tot= 0.0031 Quadrupole moment (field-independent basis, Debye-Ang): XX= -29.9490 YY= -29.9388 ZZ= -29.9364 XY= 0.0004 XZ= 0.0005 YZ= 0.0003 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.0076 YY= 0.0026 ZZ= 0.0050 XY= 0.0004 XZ= 0.0005 YZ= 0.0003 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.6662 YYY= 1.9698 ZZZ= -0.2245 XYY= -2.2108 XXY= -1.4881 XXZ= -2.0399 XZZ= 2.8764 YZZ= -0.4828 YYZ= 2.2607 XYZ= -4.0631 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -95.8445 YYYY= -96.6558 ZZZZ= -95.9085 XXXY= -1.6807 XXXZ= -0.2048 YYYX= 1.3721 YYYZ= -1.6484 ZZZX= 0.6078 ZZZY= 1.6922 XXYY= -33.4566 XXZZ= -34.1632 YYZZ= -33.1923 XXYZ= -0.0433 YYXZ= -0.4014 ZZXY= 0.3074 N-N= 1.802217969079D+02 E-N=-1.378249561882D+03 KE= 4.190536426075D+02 1\1\GINC-FREDZIEGLER\FOpt\RHF\3-21G\B1F4(1-)\FREDZIEGLER\27-Feb-2017\0 \\# opt hf/3-21g geom=connectivity\\BF4\\-1,1\F,0.6592580736,1.4087925 133,0.6960811778\F,-1.1829727482,2.0509189832,-0.5048434386\F,-0.16534 45686,0.0497848834,-0.9529646503\F,-1.336607714,0.3273921197,0.9953206 912\B,-0.5060957428,0.9593123904,0.0585714899\\Version=EM64M-G09RevD.0 1\State=1-A\HF=-420.4924688\RMSD=7.657e-09\RMSF=1.401e-04\Dipole=0.001 0475,0.0001672,0.0005815\Quadrupole=0.0007158,0.0036144,-0.0043302,0.0 00668,-0.0027496,0.0009803\PG=C01 [X(B1F4)]\\@ A people that values its privileges above its principles soon loses both. -- Dwight D. Eisenhower Job cpu time: 0 days 0 hours 0 minutes 14.3 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Mon Feb 27 13:55:42 2017.