Aromaticity, the DaVinci Code and the Golden Section

A Regular Pentagon has Internal Angles of 108°

The sum of all supplementary angles in any polygon equals 360°.

In a regular pentagon each supplementary angle equals 72°.

Thus $180^{\circ}-72^{\circ}=108^{\circ}$

Where Baeyer went wrong.

A regular pentagon can be inscribed in a circle.

Connecting alternate vertices of a pentagon produces the pentacle, a figure imbued with mysticism.

Angles Subtending a Chord (Arc)

Two line segments that subtend the same chord and meet on the circle have the same angle.

Similar Isosceles Triangles

The interior angles $\left(108^{\circ}\right)$ of the pentagon are trisected into angles $\theta=36^{\circ}$

The Golden Section

$\triangle \mathrm{ACD}$ is similar to $\triangle \mathrm{ABC}$ with base angles of 2θ
and line $\mathrm{AC}=\mathrm{CD}=\mathrm{BD}=\mathrm{x}$

If $\mathrm{AB}=1$, then $\mathrm{AD}=1-\mathrm{x}$
$\mathrm{x} / 1-\mathrm{x}=1 / \mathrm{x}$ or $\mathrm{x}^{2}+\mathrm{x}-1=0$
$x=0.618$ and $1 / x=1.618$ for positive values.

Cyclopentadienyl anion

Aromaticity Meets the Da Vinci Code

Am I Aromatic?

- planar π-system
- cyclic array
- 10 double bonds; 20 electrons; $4 n$
-No!

A Closer Look

Am I Aromatic?

- planar π-system
- cyclic array
- 11 double bonds; 22 electrons; $4 n+2$
- Yes!

The Bee Hive

The bee can enter any cell but it must enter at cell 1 and then to subsequent contiguous cells in ascending numerical order.

Cell	Routes
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21

Cell 4: 1-2-4; 1-3-4; 1,2,3,4 but not 1,3,2,4
The route to a given cell is the sum of the routes to the two previous cells.

Fibonacci Series

A series of numbers in which each number is the sum of the two preceding numbers.
" 0 ", $1,1,2,3,5,8,13,21,34,55,89,144,233$, $377,610,987,1597,2584,4181,6765,10946 \ldots$

Leonardo Pisano
Fibonacci
(~1170-1250) mouse over

The route to a given cell is the sum of the routes to the two previous cells.

Fibonacci Series

Fibonacci Series	\mathbf{a} / \mathbf{b}	\mathbf{b} / \mathbf{a}	
1	1	1	
1	0.5	2	
2	0.667	1.5	
3	0.6	1.667	
5	0.625	1.6	
8	0.615	1.625	$\mathrm{a} / \mathrm{b}=$ smaller/larger number
13	0.619	1.615	
21	0.618	1.619	$\mathrm{~b} / \mathrm{a}=$ larger/smaller number
34	0.618	1.618	
55	0.618	1.618	
89	0.618	1.618	The Golden Section (Phi)
144	0.618	1.618	is the limit of the ratio b/a.
233	0.618	1.618	
377	0.618	1.618	
610	0.618	1.618	
987	0.618	1.618	
1597	0.618	1.618	
2584	0.618	1.618	
4181			

Fibonacci Spiral and the Golden Rectangle

Leonardo' s Mona Lisa

bort

