## Problem Set 2

## Chapter 15

Due: Monday, January 31, 2005



See Pericyclic Reactions in the StudyAids for a review on conjugation, cycloadditions, and electrocyclic reactions. Electrocyclic reactions are not covered in the text.

1.



Camphorquinone (1; CQ) is used as a photosenitizer by your dentist. CQ absorbs electromagnetic radiation and causes polymerization of a monomer, bis-GMA. These composites have mostly replaced silver amalgams. At the right is a spectrum of CQ.

- a) What kind of spectrum is it?
- b) What is the  $\lambda_{max}$  of CQ?
- c) What concentration (mg/mL) of CQ is required to produce this spectrum [ $\epsilon_{log}$ =1.49 at  $\lambda_{max}$ ]? [Assume a 1 cm cell.]
- d) What color light does CQ absorb?
- e) What color is CQ?
- f) What color are the glasses that you wear when the dentist zaps you with the "light gun"? Why are they that color?

## Absorption spectrum of camphorquinone



2. Draw the structures of the Diels-Alder adducts arising from 1,3-pentadiene and CH<sub>3</sub>CH=CHCO<sub>2</sub>CH<sub>3</sub> under the conditions described in the Table. Provide a transition state model for example 2. Which Examples give the same racemic product? Explain.

| Example | Diene | Dienophile | Transition State |
|---------|-------|------------|------------------|
| 1       | Е     | Е          | endo             |
| 2       | Е     | Z          | endo             |
| 3       | Z     | Е          | endo             |
| 4       | Z     | Z          | endo             |
| 5       | Z     | E          | exo              |

3. In each of the problems below, provide the missing information, i.e., conditions, product, reactant, etc. Also, explain the reason for your choice.

a) 
$$\downarrow$$
 +  $H_3CO_2CC \equiv CCO_2CH_3$   $\stackrel{?}{\longrightarrow}$   $\stackrel{}{\longrightarrow}$   $\stackrel{\longrightarrow$ 

- 4. Compound **A** is colorless an it is devoid of absorption in the range 200-800 nm. Thermolysis of **A** affords **B**, which absorbs at 227 nm. When **B** is heated with maleic anhydride, compound **C** is formed, which has five singlets in its broadband decoupled <sup>13</sup>C NMR spectrum. Compound **C** displays vinyl hydrogens in its <sup>1</sup>H NMR spectrum. What are the structures **A-C**? Explain and illustrate.
- 5. An optically active monoterpene **A** has  $\lambda_{max} = 265$  nm (calc. 263 nm). Oxidation of **A** with warm KMnO<sub>4</sub> leads to the isolation of (R)-isopropyl succinic acid. Hydrogenation of **A** affords **B** and **C**. **C** is less stable than **B**. Both **B** and **C** have 7 singlets in their respective broadband decoupled <sup>13</sup>C NMR spectra. Treatment of **A** with methyl acrylate leads to the formation of an endo Diels-Alder adduct **D**. What are the structures of **A-D**. Explain and illustrate.
- 6. Complete the following problems. Be sure to explain the role of orbital symmetry.





- i) What wavelength light (in nm) is required for B ---> A?
- ii) Why is B ---> D unfavorable thermally?
- iii) How many singlets in the <sup>18</sup>C spectrum of C?
- 7. Explain and illustrate in terms of HOMOs and LUMOs why 1,3-butadiene and allyl cation undergo concerted, thermal cycloaddition but the allyl anion does not.