1. How would you carry out the following transformations? More than one step may be needed.

(a)
$$CH_3CH_2C\equiv CH$$
 \longrightarrow $CH_3CH_2CCH_3$

(b)
$$CH_3CH_2C\equiv CH \longrightarrow CH_3CH_2CH_2CHO$$

(d)
$$CH_3CH_2CH_2CH=CH_2$$
 \longrightarrow $CH_3CH_2CH_2CH_2C=CH$

(e)
$$CH_3CH_2C \equiv CCH_3$$
 \longrightarrow (E)- $CH_3CH_2CH = CHCH_3$

(f)
$$CH_3CH_2CH_2C \equiv CH$$
 \longrightarrow $H_{M_{1}}$ $H_{M_{2}}$ $H_{M_{3}}$ $H_{M_{4}}$ $H_{M_{1}}$ $H_{M_{2}}$ $H_{M_{3}}$ $H_{M_{4}}$ $H_{M_{4}}$

2. Propose a synthesis of muscalure, the sex attractant of the common housefly, starting from acetylene and any alkyl halides.

$$H$$
 H $muscalure$ $CH_3(CH_2)_7$ $(CH_2)_{12}CH_3$

- 3. Hydrocarbon A has the formula $C_{12}H_8$. It absorbs 8 equivalents of hydrogen upon catalytic reduction using a palladium catalyst. Upon ozonolysis only two products are formed: oxalic acid (HOOC-COOH) and succinic acid (HOOCCH₂CH₂COOH). What is A? Explain concisely.
- 4. Compounds B and C have the formula C₇H₁₄. They are optically inactive; they are not resolvable, and they are diastereomers of each other. Catalytic hydrogenation of B or C yields D. D is optically inactive, but it could be resolved into separate enantiomers. Identify B, C, and D. Explain concisely.