1. Draw stereochemical formulas for all the possible stereoisomers of the following compounds. Label pairs of enantiomers and meso compounds.
(a) $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$
(c) $\mathrm{CH}_{3}(\mathrm{CHOH})_{3} \mathrm{CH}_{3}$
(d) 1,4-dicyanocyclohexane
2. (a) What is the lowest molecular weight alkane that is chiral? Draw stereochemical formulas of the enantiomers and specify each as R or S. (b) What is the other alkane with the same molecular weight that is also chiral? Give structures for the enantiomers and designate as R or S . (c) Draw the structure of the lowest molecular weight alkane that is meso.
3. In a study of the chlorination of propane, four products $(\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D$)$ of formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ were separated by gas chromatography. Further chlorination of A, B, C, and D gave 1, 2, 3, and 3 trichloroproducts, respectively. Use of chiral shift reagents in NMR experiments showed that only C could be obtained in optically active form. Identify A, B, C , and D .
4. Identify the relationship between the following pairs of molecules, e.g., conformational enantiomers, configurational diasteromers, identical, etc. Provide a structural drawing for each molecule.
(a) (R,R)-2,3-dibromobutane and (S,S)-2,3-dibromobutane (Fischer projection)
(b) $(+)$-tartaric acid and meso-tartaric acid (Fischer projection)
(c) 1,3-diaxial-dimethylcyclohexane and 1,3-diequatorial-dimethylcyclohexane (chair conformation)
(d) (3R,5S)-3,5-dihydroxyheptane and (3S,5R)-3,5-dihydroxyheptane
(e) cis-1-ethyl-2-methylcyclohexane and trans-1-ethyl-2-methylcyclohexane
5. The specific rotation of $(+)$-tartaric acid is $+12.0^{\circ}$. What is the optical purity, enantiomeric excess, and percentage composition of a mixture of $(+)$ - and ( - -tartaric acid with a specific rotation of $9.8^{\circ}$ ?
6. 

(a) Draw a structure with formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{Cl}_{2}$ that is not optically active and does not have a plane of symmetry in any conformation.
(b) Draw three enantiomeric pairs with formula $\mathrm{C}_{5} \mathrm{H}_{8}$.

