Chem 220a

Problem Set 8

Chapter 9

Due: Monday, November 5, 2001

4. Alkyne \mathbf{A} ($\mathbf{C}_{8}\mathbf{H}_{14}$) reacts with \mathbf{H}_{2} in the presence of catalyst \mathbf{B} to give n-octane. [Although \mathbf{B} may be several things, it is incapable of selective hydrogenation. Pick one.] Treatment of \mathbf{A} in the presence of catalyst \mathbf{C} produces \mathbf{D} ($\mathbf{C}_{8}\mathbf{H}_{16}$). The reaction of compound \mathbf{D} with reagent \mathbf{E} produces meso compound \mathbf{F} ($\mathbf{C}_{8}\mathbf{H}_{18}\mathbf{O}_{2}$). What are the reagents and structures of \mathbf{A} - \mathbf{F} ? Explain and illustrate. How are the stereoisomers of products \mathbf{D} and \mathbf{F} , namely, \mathbf{D}' and \mathbf{F}' , prepared from \mathbf{A} ? Explain and illustrate.

5. Devise a synthesis of (\pm) - epoxide **1**. Your source of carbon atoms are 2-butyne, 1-propene, and acetylene. You must use each one once, and only once. All reagents are available to you. [Hint: It is best to work the problem backwards by first thinking abourt how you make **1** from its immediate precursor, etc., etc., until you make the connection. Both 1-propene and 2-butyne cannot be used as is.] Why is your product **1** racemic as opposed to being the 4R, 5R enantiomer shown?

6. When 1,1-dichloropentane is successively heated at 200 $^{\circ}$ C with excess KOH, cooled, and poured into water, 2-pentyne is isolated. When the same experiment is conducted with NaNH₂ at 150 $^{\circ}$ C, 1-pentyne is the product. Illustrate and explain.

8. When 1-hexyne is heated with KOH at 200 °C, more 2-hexyne ($\Delta H_f^o = +25.7 \text{ kcal/mol}$) is expected than 3-hexyne ($\Delta H_f^o = +25.2 \text{ kcal/mol}$). Explain.