On the relationship between cumulative correlation coefficients and the quality of crystallographic data sets

Jimin Wang 1,* Gary W. Brudvig,1,2 Victor S. Batista,2 and Peter B. Moore1,2

1Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
2Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107

\textit{Protein Sci.} (2017)
in press DOI: 10.1002/pro.3314

Theoretical limit:

\[CC_{1/2} = \frac{1}{1 + \alpha R_{\text{diff}}^2}, \]

1 < \(\alpha \) < 2 depends only on the symmetry-related multiplicity

CC1/2 and R(diff) values have been computed for four XFEL experimental data sets for PSII (5WS5, black spheres; 5WS6, red; 5WS0, green; 5GTI, blue) as a function of resolution. follow the magenta curve, as do their cumulative CC1/2 values.