Computational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca$^{2+}$ or Ca$^{2+}$ Substituted by Sr$^{2+}$

Leslie Vogt,*,† Mehmed Z. Ertem,†,‡ Rhitankar Pal,† Gary W. Brudvig,† and Victor S. Batista*,†

†Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
‡Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States

QM/MM-optimized structure of the Ca$^{2+}$-OEC in the S$_{2-}$ state with both O4 and O5 protonated. Displacement of W5 as a result of Sr$^{2+}$ substitution in all of the S states studied herein leads us to propose that this water may play an important role in the mechanism of water oxidation.