Inferring Protonation States of Hydroxamate Adsorbates on TiO₂ Surfaces

Benjamin Rudshteyn, † Christian F. A. Negre, *, † Robson S. Oliboni, § Adriano Monti, †,∥ Jeffrey Chen, † Robert H. Crabtree, † Luis G. C. Rego, †,‡ and Victor S. Batista*†,‡

†Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
‡Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
§Department of Physics, Federal University of Santa Catarina, Florianopolis, Santa Catarina 88040-900, Brazil

Supporting Information

ABSTRACT: We explore the protonation states of benzohydroxamic acid adsorbates bound to the (101) facet of TiO₂ anatase by using a combination of density functional theory, simulations of UV–vis spectra based on a tight-binding Hamiltonian, and direct comparisons to experimental measurements. We find that the characteristic red-shifted spectrum of nonmethylated, relative to the methylated, hydroxamic acids can only be explained by proposing a monodeprotonated monodentate mode as the main adsorption mode. The reported analysis suggests a simple, yet general, spectroscopic method based on UV–vis absorption measurements and tight-binding calculations for inferring changes of pKₐ of molecular adsorbates interacting with semiconductor electrode surfaces.

INTRODUCTION

Hydroxamic acids (Chart 1) have been explored as ligands in metal complexes¹ and anchors to metal oxide surfaces² due to their valuable binding properties, already exploited by siderophores,³ as well as pharmacological applications.⁴ Recent studies have shown that hydroxamic acids are effective anchoring groups for linking chromophores and catalysts to TiO₂ surfaces in solar photocatalytic cells.²,⁵ Theoretical studies have shown that hydroxamic acids are effective anchoring groups for linking chromophores and catalysts to TiO₂ surfaces in solar photocatalytic cells.²,⁵

Hydroxamic acids (Chart 1) have been explored as ligands in metal complexes¹ and anchors to metal oxide surfaces² due to their valuable binding properties, already exploited by siderophores,³ as well as pharmacological applications.⁴ Recent studies have shown that hydroxamic acids are effective anchoring groups for linking chromophores and catalysts to TiO₂ surfaces in solar photocatalytic cells.²,⁵

High-quality IR methods combined with density functional theory (DFT) analysis of small complexes¹¹ have suggested that monodeprotonation of the hydroxamic OH group induces chelating binding. More recently, we found evidence for the doubly deprotonated bridging bidentate form,¹² as the appropriate structure when covalently bound to the (101) surface of anatase TiO₂ (i.e., the most stable facet of TiO₂ under neutral pH conditions).¹³ Yet, in another article, IR and crystallography studies confirmed monodeprotonation and suggested a chelating binding mode with reconstruction,¹⁴ noting that the UV–vis absorption of benzohydroxamic acid with R = H (Chart 1) is red-shifted relative to the corresponding spectrum of benzohydroxamic acid with R = Me.¹⁴

In this paper, we examine the molecular origin of the aforementioned shift of the UV–vis spectroscopic bands with the goal of understanding the actual protonation state of these important molecular adsorbates bound to semiconductor surfaces. Our comparative analysis of binding motifs (Chart 2) includes simulations of the absorption spectra that allow for direct comparisons with experimental spectra. Our simulations of UV spectra are based on a tight-binding Hamiltonian parametrized at the DFT level, using the PBE exchange-correlation functional¹⁵ within the generalized gradient approximation (GGA) with pseudopotentials based on the work of Troullier and Martins¹⁶ and the polarized double-ζ basis set,¹⁷ as implemented in SIESTA 3.1.¹⁸ The Monkhorst–Pack k-point grid for the Brillouin zone¹⁹,²⁰ was limited to the Γ-point. Periodic structures consisting of stoichiometric 4 × 4 × 3 layer slabs were optimized with a
monolayer of adsorbed water, as in previous work that focused on the binding of carboxylic acids. The atoms of the bottom two layers of the slab were kept fixed to simulate a semi-infinite surface. The real-space grid energy cutoff was set to 200 Ry.

Geometries were relaxed until the residual forces became less than 0.04 eV/Å per atom.

The DFT parametrization of the tight-binding model Hamiltonian was based on the B3LYP exchange-correlation functional and the 6-31G(d) basis set, as implemented in Gaussian 09. We used the default integration grid which consisted of 75 radial shells with 302 angular points each. The extended Hückel tight-binding parameters were optimized for the benzohydroxamic acid in the gas phase to match DFT calculations of dipole moments, with additional constraints preserving the DFT HOMO−LUMO energy differences as well as the symmetries of the HOMO and LUMO orbitals (Figures 1a and 1b).

The EHT parameters (Table S2) predict molecular orbitals, shown in Figures 1c and 1d. The resulting HOMO−LUMO gap is 5.20 eV, in agreement with the DFT value of 5.11 eV. In addition, the resulting dipole moment of 3.66 D agrees well with DFT (3.70 D). Table 1 shows the resulting EHT spectra for the isolated benzohydroxamic acid, which agrees well with the experimental peak positions.

**RESULTS AND DISCUSSION**

1. Adsorption Motifs of Benzohydroxamic Acids on TiO2 Surfaces. Scheme 1 describes the calculations of binding energies for benzohydroxamic acids on model structures of hydrated TiO2 {101} slabs, as obtained from the energy differences between bound and detached adsorbates. Binding modes obtained upon displacement of one (mode 1) or two water molecules (binding modes 2 or 3) are compared to the energies of separated fragments, including the hydrated slab and the hydrogen acid adsorbate in solution (Scheme 1). The resulting energies are reported in Table 2, with thermodynamically...
favorable binding when $\Delta E < 0$. Figure 2 shows the optimized structures for different protonation states for modes 1 (a–l), 2 (d–f), 3 (g–i), and 4 (j–l).

According to Table 2, the benzohydroxamic acid binds to a pristine TiO$_2$ {101} surface as a monodeprotonated chelate (1) or monodeprotonated monodentate adsorbate (4). It is most stable when $R = H$ for modes 1 and 4, relative to $R = \text{l.p.}$ or when $R = \text{Me}$. The bridging bidentate mode 3 is ruled out due to the unfavorable energetics. Therefore, benzohydroxamic acid is consistently predicted to bind first through modes 1 and/or 4 with $R = H$, though 4 should be favored overall assuming there is no significant surface reconstruction.\(^{14}\)

2. UV–vis Spectra of Benzohydroxamic Acids Bound to TiO$_2$. Figure 3a shows the experimental UV–vis absorption spectrum of TiO$_2$ functionalized with benzohydroxamic acid in the forms $R = \text{Me}$ (blue) as well as the deprotonated forms $R = H$ or $R = \text{l.p.}$ (red), along with the spectra of both bare TiO$_2$ (black). The experimental spectra were measured up to 350 nm.\(^{14}\) The comparative analysis clearly shows that the spectrum for the $R = H$ adsorbate is red-shifted relative to the absorption of $R = \text{Me}$, which itself is red-shifted relative to the spectrum of bare TiO$_2$ (referred to as the red-shift from now on).

**Table 2. Adsorption Energies (kcal mol$^{-1}$) for the Binding Modes of Benzohydroxamic Acid**

<table>
<thead>
<tr>
<th>binding mode</th>
<th>R</th>
<th>adsorption energy (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>-0.92</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>-3.85</td>
</tr>
<tr>
<td>1</td>
<td>l.p.</td>
<td>3.99</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>31.9</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>32.1</td>
</tr>
<tr>
<td>2</td>
<td>l.p.</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>16.8</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>18.1</td>
</tr>
<tr>
<td>3</td>
<td>l.p.</td>
<td>49.6</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>-9.5</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>-12.8</td>
</tr>
<tr>
<td>4</td>
<td>l.p.</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Figure 2. DFT-optimized structures of benzohydroxamic acid bound to a model hydrated TiO$_2$ {101} surface. Protonation states (a–l) for the four binding modes correspond to Chart 1, as follows: 1 chelating on a pristine surface, 2 chelating on a defective surface, 3 bridging bidentate on a pristine surface, and 4 monodentate on a pristine surface. Refer to Chart 2 for the chemical structure of the anchoring mode. The coloring scheme is as follows: green = C, white = H, red = O, pink = Ti, and blue = N. Mode 1 shows significant surface reconstruction where the coordinated Ti is lifted up from the plane surface.

Figure 3. Comparison of UV–vis spectra of benzohydroxamate adsorbates bound to TiO$_2$, including experimental spectra (a) (adapted from ref 14) and calculations with binding modes 1 (b) and 4 (c), as predicted by theory, including oscillator strengths as sticks. The spectra are either for TiO$_2$ sensitized with benzohydroxamic acid (red $R = H$) or green solid lines ($R = \text{l.p.}$) depending on protonation state, sensitized with methylated benzohydroxamic acid (blue solid lines $R = \text{Me}$) or without sensitization (black solid lines).

We investigate which assignment of protonation states, including various options for nonmethylated species ($R = H$ or $R = \text{l.p.}$), is consistent with the observed spectral trend. The $R = \text{Me}$ species serves as a reference since it does not have variable protonation states when bound to the TiO$_2$ surface.
Figures 3b and 3c show that only the spectrum of R = H reproduces the red-shifted pattern, relative to the spectrum for R = Me with binding modes 1 and 4. Mode 4 should be favored energetically based on Table 2 and the overall spectral curve. Therefore, most of the analysis below focuses on 4. More details, including the oscillator strengths and wavelengths for particular transitions (Tables S3–S5), are given in the SI. These comparisons, thus, enable the assignment of protonation states of molecular adsorbates corresponding to those that are most consistent with the experimental trends. We limit our analysis to comparisons, thus, enable the assignment of protonation states of molecular adsorbates corresponding to those that are most consistent with the experimental trends. We limit our analysis to wavelengths longer than 350 nm, since at shorter wavelengths the absorption edge of bare TiO$_2$ overwhelms transitions originating from the molecule. Wavelengths longer than 350 nm allow us to capture the frontier orbital excitations, including transitions from the adsorbate to TiO$_2$.

Figure 4 shows the energetic analysis of frontier orbitals for the entire system, providing insights on the origin of the spectral shifts at the molecular/electronic level. Additional details are given in the SI. For binding mode 1, Figure 4a and Tables S3–S5 show that none of these frontier orbitals are significantly perturbed by adsorption and deprotonation, with the exception of HOMO–2, which retracts to lower energies. However, the HOMO–2 shift is not enough to explain the significant red-shift. For binding mode 4, Figure 4b shows that the HOMO–2 state is lowered by deprotonation but not by methylation.

![Frontier orbital diagram](image)

**Figure 4.** Frontier orbital diagram for benzohydroxamic acids bound to TiO$_2$ according to mode 1 (a) and mode 4 (b). The HOMOs are mostly localized on the adsorbate molecule, while the LUMOs are mostly localized on the TiO$_2$.

The higher occupied orbitals of the system are localized on the hydroxamic acid (Figure 5), whereas the lower unoccupied orbitals correspond to states in the conduction band of TiO$_2$ (Figure S2). The nature of the lowest energy transitions are, thus, direct interfacial charge transfer photoexcitations from the hydroxamic acid to the TiO$_2$, similar to observations reported in our previous work with catecholate adsorbates. The selection of EHT over DFT can give us an advantage since TDDFT may fail to describe long-range charge transfer excitations.

Furthermore, Table 1 shows that photoexcitations localized on the adsorbate molecule involve much shorter wavelengths (ca. 250 nm), while the TiO$_2$ absorption edge is around 400 nm. Therefore, transitions at wavelengths longer than 400 nm are mostly due to direct interfacial charge transfer. From the oscillator strength pattern of transitions in Figure 3, it is clear that for either binding mode 1 or 4 the red-shift occurs due to an increase in oscillator strength for R = H, relative to R = Me, whereas the oscillator strength decreases for R = lp. Figure 5 shows that the HOMO orbitals are much more localized on the hydroxamic acid in the case of R = lp, than for R = Me and R = H. The localization of the HOMO to HOMO–2 orbitals leads to a decrease in photoexcitation oscillator strength since it depends on the spatial overlap between the initial and final orbitals. Regarding the form R = Me, a small disruption of the conjugation can be observed in the benzohydroxamate adsorbate, which depletes the chromophore of charge, by distorting the dihedral angle between the phenyl ring and the C=O bond (Table 3). For example, for mode 4, the transitions near 450 nm mainly originate from HOMO–2 to LUMO+1 and HOMO–1 to LUMO+2 (Tables S3–S4). These transitions are stronger for R = H than for R = Me, as shown by the slightly decreased delocalization on the phenyl ring for R = Me than for R = H in the HOMO–2. The transitions for the R = Me may also be slightly more symmetry-forbidden.

![HOMO, HOMO–1, and HOMO–2 states](image)

**Figure 5.** HOMO, HOMO–1, and HOMO–2 states represented an isosurface (isovalue 0.03) for mode 4 for all R groups under consideration, with green and yellow representing positive and negative phases of the states.

<table>
<thead>
<tr>
<th>binding mode</th>
<th>R = H dihedral angle (deg)</th>
<th>R = Me dihedral angle (deg)</th>
<th>R = lp. dihedral angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63.319</td>
<td>233.863</td>
<td>234.949</td>
</tr>
<tr>
<td>2</td>
<td>54.61</td>
<td>352.259</td>
<td>45.277</td>
</tr>
<tr>
<td>3</td>
<td>41.302</td>
<td>45.451</td>
<td>6.050</td>
</tr>
<tr>
<td>4</td>
<td>111.262</td>
<td>44.200</td>
<td>3.094</td>
</tr>
</tbody>
</table>

Table 3. C–C–C–N Dihedral Angle, Along the Side of the Phenyl Ring Closer to the N Group, for R = H, R = Me, and R = lp.

On the basis of the comparisons with experimental spectra, we find that R = H is the most consistent assignment for the protonation state of hydroxamic acid adsorbed on TiO$_2$. Moreover, we find that the red-shift of the unmethylated...
adsorbate, relative to the spectrum of the methylated structure, is reproduced by theory.

## CONCLUSIONS

We have shown that benzohydroxamic acid adsorbates bind to pristine TiO₂ surfaces as monodentate Ti ligands in the most stable binding motifs, as shown by using simulations of UV−vis spectra and direct comparisons to experimental measurements. The analysis of UV−vis spectra shows that doubly deprotonated states can be ruled out since they are inconsistent with experimental data. The nature of the lowest energy transitions are, thus, direct interfacial charge transfer photoexcitations from the hydroxamic acid to the TiO₂. The charge localization explains the decrease in oscillator strength for R = l.p. relative to R = Me. The resulting understanding is particularly valuable for the design of robust anchoring groups in applications to functionalization of semiconductor surfaces typically used in dye-sensitized solar cells and photocatalytic surfaces. At the same time, the reported analysis demonstrates a simple spectroscopic method, based on UV−vis absorption measurements and tight-binding calculations, for inferring binding modes and protonation states of molecular adsorbates interacting with semiconductor electrode surfaces.

## ASSOCIATED CONTENT

Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b01272.

Detailed information on the EHT parametrization, additional orbital data, data for relevant electronic transitions, coverage ratio discussion, additional references, and coordinates of all computed structures (PDF)

## AUTHOR INFORMATION

### Corresponding Authors
*E-mail: negre@lanl.gov (C.F.A.N.).

*E-mail: luis.guillerme@ufsc.br (L.G.C.R.).

*E-mail victor.batista@yale.edu (V.S.B.). Phone: (203) 432-3925.

Fax: (203) 432-6144.

**ORCID**

Benjamin Rudshtyen: 0000-0002-9511-6780

Robert H. Crabtree: 0000-0002-6639-8707

Victor S. Batista: 0000-0002-3262-1237

### Present Address

∥Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Netherlands, Einsteinweg 55, 2333 CC Leiden.

**Notes**

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

V.S.B. and R.H.C. acknowledge financial support as a part of the Argonne-Northwestern Solar Energy Research (ANSER) Center of the federally funded Energy Frontier Research Center (Award Number DE-SC0001059). V.S.B. acknowledges high performance computing time from NERSC and from the Center for Research Computing at Yale University. B.R. gratefully acknowledges support from the NSF Graduate Research Fellowship under Grant No. DGE-1122492. L.G.C.R. acknowledges the Brazilian National Counsel of Technological and Scientific Development (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for funding of this project. B.R. thanks Adam Matula, Dr. Ke R. Yang, and Dr. Svante Hedström for helpful comments.

## REFERENCES


