Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer†

Jianbing Jiang,‡ John R. Swierk, Svante Hedström, Adam J. Matula, Robert H. Crabtree,* Victor S. Batista,* Charles A. Schmuttenmaer* and Gary W. Brudvig*

Interfacial electron transfer dynamics of a series of photosensitizers bound to TiO₂ via linkers of varying conjugation strength are explored by spectroscopic and computational techniques. Injection and recombination depend on the extent of conjugation in the linker, where the LUMO delocalization determines the injection dynamics but both the HOMO and HOMO–1 are involved in recombination.

The efficient capture and conversion of solar energy into a usable form is a significant research target. Dye-sensitized systems, such as dye-sensitized solar cells (DSSCs) and water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs), utilize high surface area metal oxide scaffolds sensitized with a molecular light-absorbing dye to harvest sunlight and convert it into an electrical potential via an electron-transfer event between the sensitizer and a metal oxide. A solution-phase redox shuttle quenches the sensitizer radical in DSSCs, while in WS-DSPECs it is quenched by a water oxidation.¹,² Unfortunately, in WS-DSPECs and p-type DSSCs, rapid back electron transfer (recombination) significantly limits the power conversion efficiencies that can be obtained.³,⁴

Molecular design offers a promising strategy for tuning the interfacial electron-transfer kinetics in dye-sensitized energy-conversion systems. In DSSCs, a substantial research effort has explored systems of donor–acceptor dyes where the donor–acceptor pair is bridged by a π-conjugated system and has led to significant improvements in power-conversion efficiencies.⁵-*⁷ Alternatively, positioning saturated alkyl linkers between chromophores and anchoring groups is effective at retarding detrimental recombination.⁸ The intermediate case, where the chromophore and anchor are connected by a partially conjugated bridge, is largely unexplored.

Recently, we demonstrated a phenyl-amide structure that functions as a molecular rectifier based on the spatial asymmetry of the amide moiety.⁹ The amide partially breaks the conjugation within the molecule and depending on its orientation, moves the LUMO closer or further from the Fermi level of the system, making it sensitive to the bias potential and thereby imparting rectifying character.

Inspired by these rectifiers, we developed a novel series of dyes (Ru₁–Ru₃, Chart 1), as a platform for exploring partially conjugated linking strategies using spectroscopic techniques to characterize the interfacial electron-transfer dynamics in conjunction with quantum chemistry calculations. The dyes, based on the well studied ruthenium tris(bipyridine) motif, were prepared by a standard synthetic strategy, starting with the preparation of the functionalized bipyridine intermediates bearing an ethyl phosphonate group and incorporating amide or ethylene units. The amide bonds were then formed by coupling an amine unit to the carboxylic acid, pre-activated with thionyl chloride for Amide₁ or carbodiimide for Amide₂. The alkene was formed by condensation of a phosphonate and aldehyde in a Horner–Wadsworth–Emmons reaction. In the next step, the ruthenium tris(bipyridine) complex was synthesized and subjected to chloride-to-PF₆⁻ anion exchange for better solubility. Finally, removal of the ethyl groups unveiled the phosphonate anchoring groups. Each target compound was

‡ Equal contributions.

Received 30th May 2016,
Accepted 23rd June 2016

DOI: 10.1039/c6cp04377a
www.rsc.org/pccp

Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut, 06520, USA. E-mail: robert.crabtree@yale.edu, victor.batista@yale.edu, charles.schmuttenmaer@yale.edu, gary.brudvig@yale.edu

† Electronic supplementary information (ESI) available: Full experimental and computational details, including synthetic route, DFT calculations, electron dynamics calculations, Marcus recombination calculations, etc. See DOI: 10.1039/c6cp04377a

‡ Equal contributions.
prepared in modest to high yields, and were fully characterized prior to use. Phosphonate groups were used to anchor to the chromophores to TiO₂ because of their high stability in aqueous environments.⁴

Fig. S1 (ESI†) shows the steady-state absorption spectra of Ru1-ester, Ru2-ester, and Ru3-ester in acetonitrile. As is typical of ruthenium tris(bipyridine) derivatives, the only absorption feature in the visible region is a strong metal-to-ligand charge-transfer band. For Ru3-ester, the absorption is notably stronger and slightly broader, attributed to the stronger delocalization across the linker. The steady-state emission spectra for the three ester compounds show broad emissions at wavelengths longer than 550 nm. For this class of compounds, the heavy Ru atom induces spin–orbit coupling, facilitating rapid and nearly quantitative intersystem crossing of the excited singlet (S₁) to the triplet (T₁), with subsequent emission from the T₁ state. By fitting the emission spectra to a single-mode Franck–Condor function,¹¹,¹² the energy gap (E₀–0) between the zeroth vibrational levels of the S₀ and T₁ states can be determined, see Fig. 1 and Table S1 (ESI†). The E₀–0 values are similar (~2 eV) for the three compounds. Table S1 (ESI†) also shows the vertical transition energies for S₀ → S₁ calculated with linear-response time-dependent DFT as well as the energy difference between the T₁ and S₀ states after optimization with unrestricted DFT (uDFT). Details of the calculations are found in the ESI†. In general, the agreement between the experimental and calculated E₀–0(S₀ → T₁) values is very good, differing by less than 0.1 eV in all cases. While S₁ → S₀ emission cannot be observed experimentally, hot injection from the S₁ state into TiO₂ is known to occur for other ruthenium tris(bipyridine) derivatives.¹³ DFT calculations suggest that the unrelaxed S₁ state of these compounds lies above the optimized T₁ by about 0.5 eV.

The ground state potential for oxidation E₁/2(Ru³⁺/²⁺) was determined from cyclic voltammetry in acetonitrile using the ester versions of Ru₁, Ru₂, and Ru₃ (Fig. S2, ESI†) and was also calculated with uDFT. For Ru₁-ester, we determined a potential of 1.32 V vs. NHE, while Ru₂-ester and Ru₃-ester gave potentials of 1.06 V and 1.21 V vs. NHE, respectively (Table S1, ESI†). The excited state reduction potential E₂⁰⁰(Ru³⁺/²⁺*) can be approximated as the difference between E₁/2(Ru³⁺/²⁺) and E₀–0 (Fig. 1). Ru₂ exhibits the most negative E₁/2(Ru³⁺/²⁺) at −1.06 V vs. NHE, while Ru₁ and Ru₃ lie lower in energy at −0.68 and −0.72 V vs. NHE, respectively. At pH 1, there is significant ΔG for injection into the conduction band of at least 420 mV. The calculated T₁ excited-state energies are slightly but consistently underestimated compared to experiments, which correlates with the small underestimations of the reduction potentials. (Fig. S1 and Table S1, ESI†).

The relative energy levels of the three compounds are rationalized from their chemical structures as follows. The carbonyl group directly attached to the bpy in Ru₁ is electron-withdrawing and consequently stabilizes the orbitals in the bpy π system. In Ru₂, however, the electron-donating amine group raises the bpy π-orbital energies. This has a larger effect on the LUMOs, which are of pure π* character, than on the HOMOs that are mainly Ru-d orbitals but have some bpy-π character. The HOMO level directly relates to the ground state reduction potentials, and the LUMO level relates to the excited state potential since the excitation predominantly corresponds to the promotion of an electron to this orbital. Ru₃ exhibits intermediate potentials in all cases due to the very weakly electron-donating vinylene group. The calculated HOMO, LUMO, and LUMO−1 of all dyes are depicted in Fig. 2.

Time-resolved terahertz spectroscopy (TRTS) is a powerful tool for monitoring the injection of an electron into the conduction band of TiO₂.¹⁴,¹⁵ TRTS is an ultrafast, far-infrared technique that is sensitive to the presence of mobile electrons, i.e., electrons in the conduction band. By measuring the decrease in the peak amplitude of the THz pulse, the appearance of electrons in the conduction band can be monitored on the fs–ps timescale. Fig. 3 shows the TRTS scans for Ru₁, Ru₂, and Ru₃ on TiO₂ in 0.1 M HClO₄. Despite the significant driving force for injection for all three compounds, only Ru₂ and Ru₃ show substantial injection on a one-nanosecond timescale. Ru₁ does not show any evidence of injection on the timescale of the experiment. Ru₂ and Ru₃ are more effective electron donors than Ru₁ because of the lack of stabilization of the LUMO by the carbonyl group directly attached to the bpy. Ru₂ and Ru₃ are both electron-donating and electron-withdrawing in the same degree, while Ru₁ is more electron-donating and less electron-withdrawing. The carbonyl group stabilizes the bpy in Ru₁, but it also destabilizes the bpy in Ru₂ and Ru₃. Ru₂ and Ru₃ are therefore more effective electron donors than Ru₁, but Ru₁ is more effective than Ru₂ and Ru₃ in stabilizing the electron.

Fig. 1 Experimental and calculated redox potentials for Ru₁, Ru₂, and Ru₃ as well as the position of the anatase TiO₂ conduction band and the H₂/H⁺ and O₂/H₂O couples at pH 1.

Fig. 2 Ground state HOMO and LUMO of the three esters. The HOMO−1 of the structurally relaxed oxidized state. Calculated at the DFT B3LYP/SDD[Ru],6-311+G(d,p)][P,C,N,H,O]/SDD[Ru],6-31G(d)[P,C,N,H,O] level of theory.
exhibits less than 20% of the injection amplitude of Ru3 over the time window permitted by our instrument, despite exhibiting a similar $E^0(Ru^{3+/2+})$ potential. A three-exponential function (described in the ESI†), convoluted with a Gaussian instrument-response function of 0.5 fs was fitted to the TRTS scans for Ru2 and Ru3. Because of the small injection amplitude of Ru1, only a biexponential equation was used for this dye.

All three compounds exhibit a component that is instrument response limited (<0.5 ps). Both Ru2 and Ru3 exhibit an intermediate component of 122 ps and 63 ps, respectively, and a slower component of 725 ps and 501 ps, respectively. Ru1 exhibited only an additional slow component of 520 ps. The relative injection amplitudes for Ru2 and Ru3 agree with our previous study of a phosphonated ruthenium tris(bipyridine) on TiO$_2$, with roughly 20% of the injection occurring at less than 0.5 ps and about 50% of the injection occurring at long timescales (Table S2, ESI†). We suggest that the fast (<0.5 ps) component likely relates to “hot injection” from the S$_0$ state, while the long component (>500 ps) corresponds to injection from the vibrationally and structurally relaxed T$_1$ state. The intermediate component may then account for mixed S$_1$ and T$_1$ injection. Based on this picture, the minimal injection from Ru1 on the 1 ns timescale suggests that intersystem crossing is much faster than injection from the short-lived S$_0$ state and the slow injection (~6 ns) we observe in the transient absorption experiments (see below) is mostly from T$_1$.

The much lower injection yield of Ru1 on a sub-nanosecond timescale is readily rationalized from its LUMO, which is completely localized on the carbonyl and adjacent bpy, far removed from the anchoring phosphonate and thus from the TiO$_2$, see Fig. 2. This localization results from the previously mentioned electron-withdrawing effect of the amide carbonyl group, which stabilizes the bpy-LUMO to the point where it remains unmixed with the remainder of the π system. In Ru2 and Ru3, the bpy LUMO is destabilized by the electron-donating amine and vinylene, raising the bpy-LUMO to an energy similar to the remaining part of the conjugated linker, inducing a delocalization towards the anchor. While linker rigidity can retard overlap between the chromophore and the anchor group, that is unlikely to play a role in our case as rotation around the amide and ethylene bridges in Ru1, Ru2, and Ru3 is permitted.

A quantification of how this MO property affects the injection was obtained from electron dynamics simulations, following a previously reported methodology based on Extended Hückel semi-empirical calculations. The three dyes were anchored to the (101) plane of a 2D-periodic Ti$_{128}$O$_{256}$ slab of anatase via a semi-optimized binding geometry obtained from DFT calculations (Fig. S3, ESI†). The initial wave packet was created by populating the adsorbate LUMO, the character of which is verified against the DFT-calculated LUMO (Fig. S4, ESI†). Propagation was calculated by integrating the time-dependent Schrödinger equation (eqn (S4), ESI†) analytically in time steps of 1.0 fs for 1000 fs. Exponential damping terms were added to the Ti atoms on the edge and bottom of the slab, reducing the wave packet. The population of the wave packet norm on the adsorbate was then monitored and the remaining fraction of the wave packet tracked to give an estimate of the injection time constant τ, see eqn (S5) (ESI†) and Fig. 4. The calculated values of τ obtained for the three dyes: 3724 fs, 1234 fs, and 953 fs for Ru1, Ru2, and Ru3, respectively, are in good agreement with the trend from TRTS. Absolute agreement is not expected due to the approximations in the dynamics calculations, which neglect solvent effects and structural dynamics for example.

Transient absorption spectroscopy (TAS), a time-resolved method for investigating fast (ns–ms) electronic processes,$^{19-22}$ allowed us to monitor the recombination of the injected electron back to the oxidized sensitizer on the nanosecond time scale (Fig. 5). The samples were excited with a 2 mJ pulse at 532 nm with a beam diameter of 10 mm, and Fig. 5 shows the short (<3 μs) and long (100 μs) single-wavelength traces monitored at 420 nm. At 420 nm, the loss of absorption corresponds to a bleach of the MLCT band following the formation of Ru$^{3+}$. While the bleach is instantaneous for Ru2 and Ru3 on the time scale of the measurement, the bleach grows in on the timescale of several
nanoseconds for Ru1. A fit of the injection component of the Ru1
TAS gives an injection lifetime of ~6 ns.

A stretched exponential (see ESI†) was fit to the data from
100 ns to 100 μs to avoid the slow injection observed for Ru1.
For Ru1 the value of (τ) was 23 ± 4 μs, while for Ru2 and Ru3 (τ)
was 13 ± 2 μs and 7 ± 2 μs, respectively. The trend in
recombination times from electrons in the TiO2 to the three
oxidized dyes is rationalized from the calculated extents and
energies of the HOMO and HOMO−1 of the oxidized dyes. In all
dyes, the HOMO is almost exclusively of Ru(4d) character,
localized on the ruthenium core. The spatial separation
between this orbital and the TiO2 makes the recombination
TiO2 → HOMO_dye dominated by Marcus-type hopping due to
very weak coupling (eqn (S6), ESI†), but this type of electron
transfer cannot account for the trend in recombination rates
between the dyes. While absent in Ru1, a more efficient pathway
for recombination appears in Ru2 and Ru3, where the
HOMO−1 of the oxidized species extends across the entirety of
the linkers while also exhibiting significant overlap with the
HOMO, see Fig. 2. The hole in the oxidized species can easily
access the HOMO−1 in Ru2 and Ru3, where a Boltzmann
estimate based on the orbital energies suggests that the population
ratio of HOMO−1/HOMO is 0.15%, 1.10%, and 5.73% at
298 K for Ru1, Ru2, and Ru3, respectively. Ru1 consequently
has its recombination quenched for two reasons: the HOMO−1 is
too deep to be accessible for the hole on the oxidized dye, and
it does not overlap spatially with the HOMO.

In order to gauge the interplay of injection and recombina-
tion in these sensitizers, we utilized them as sensitizers in
DSSCs (Table S3, ESI†). Of the three sensitizers, Ru2 exhibited
the highest short-circuit current, open-circuit voltage, and
power conversion efficiency. This suggests that the partial
conjugation found in Ru2 provides a better balance of injection
and recombination in an actual device than the less conjugated
(Ru1) or fully conjugated (Ru3) sensitizers.

To summarize, we have used advanced time-resolved spec-
troscopic techniques in conjunction with steady-state and time-
dependent quantum chemistry calculations to follow the
electronic dynamics of three new light-harvesting sensitzers
in which the energy-level landscape is tuned via small alter-
ations in the chemical structure of the linkers. The linkers impose notable changes in the rates of injection and recombi-
nation when anchoring the sensitizers to TiO2 nanoparticles.
Dye-sensitized solar cells constructed from these systems show
markedly distinct efficiencies. In a broader context, the balance
of injection and recombination dynamics being tunable by
tailoring the degree of conjugation is likely to be important
for many electron-transfer processes beyond dye-sensitized
solar cells and water-splitting dye cells.

Acknowledgements

This work was funded by the U.S. Department of Energy Office of
Science, Office of Basic Energy Sciences, under award no. DE-
FG02-07ER15909 and by a generous donation from the TomKat
Charitable Trust. V. S. B. acknowledges support for the computa-
tional work from the Argonne-Northwestern Solar Energy
Research (ANSER) Center, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences (US DOE-OS-BES) under award
no. DE-SC0001059 and the Center for High Performance Com-
puting, Shanghai Jiao Tong University.

Notes and references

2357–2387.

2 K. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger III,
V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree and

6 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker,
B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli,
U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel,

8 C. Zafer, M. Kus, G. Turkmen, H. Dinçalp, S. Demic,

9 W. Ding, C. F. A. Negre, J. L. Palma, A. C. Durrell, L. J. Allen,
K. J. Young, R. L. Milot, C. A. Schmuttenmaer,
G. W. Brudvig, R. H. Crabtree and V. S. Batista,

10 K. Hanson, M. K. Brenneman, H. Luo, C. R. K. Glasson,

11 K. Hanson, M. K. Brenneman, A. Ito, H. Luo, W. Song,
K. A. Parker, R. Ghosh, M. R. Norris, C. R. K. Glasson,
J. J. Concepcion, R. Lopez and T. J. Meyer, J. Phys. Chem. C,
2012, 116, 14837–14847.