Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO Films

J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.7b07855 • Publication Date (Web): 21 Sep 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO$_2$ Films

Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, CT 06520-8107, United States

§ Present address: Department of Physics, Stockholm University, 10691 Stockholm, Sweden

‡These authors contributed equally.

ABSTRACT

Electron-injection dynamics of dye-sensitized photoelectrochemical cells depend on the length of the linker connecting the molecular photosensitizer to the metal oxide electron acceptor. However, systematic studies of the effect of chromophore–oxide distance are scarce. Here we present the synthesis, characterization, spectroscopy, and computational modeling of electron-injection dynamics from free-base trimesitylporphyrins with varying linker lengths into tin(IV) oxide (SnO$_2$). In each system, the porphyrin core and metal oxide film remain the same while only the linker binding the porphyrin to the carboxylate anchor group is varied. A length range spanning 8.5–17.2 Å is studied by employing phenylene, biphenylene, terphenylene, and benzanilide groups as the linker. We find a clear correlation between linker length and injection rates, providing insights that will be exploited in the optimization of dye-sensitized photoelectrochemical cells.

KEYWORDS

Electron injection, trimesitylporphyrins, terahertz spectroscopy, density functional theory
TOC FIGURE:
1. Introduction

Photoelectrochemical cells (PECs), which harvest energy from the sun to produce fuel, have experienced significant developments as an alternative energy source to fossil fuels.\(^1\) The conversion of solar energy to a usable fuel requires the efficient capture of solar light followed by charge separation and a fuel-forming reaction as a means to store that energy. One strategy for addressing the challenges posed by both capture and conversion is a water-splitting dye-sensitized photoelectrochemical cell (WS-DSPECs), which oxidizes water via a catalyst at a photoanode to produce \(\text{O}_2\) and reduces protons at the cathode to produce \(\text{H}_2\).\(^2,3\) The \(\text{H}_2\) produced at the cathode is directly usable as an energy source and can be stored for later use.

One important step in WS-DSPECs is the photoinduced electron injection from a photosensitizer to the metal oxide. If the conduction band minimum (CBM) of the metal oxide material is at a lower energy than the lowest unoccupied molecular orbital (LUMO) of the photosensitizer, then a driving force exists for interfacial electron transfer into the conduction band of the metal oxide material.\(^4\) Electron transfer occurs through the molecular linker/anchor portion of the photosensitizer, which is the connection between the chromophore core and the metal oxide.\(^5\) A wealth of literature exists on photosensitizers for PECs, including ruthenium-based,\(^6-8\) porphyrin-based,\(^9-11\) and other organic dyes.\(^12-15\) In this study, we employ porphyrin-based dyes because they possess broad absorbance across the visible region, have appropriate highest occupied molecular orbital (HOMO) energies for water-oxidation catalysis, and appropriate LUMO energies for the injection of electrons into metal oxides. Furthermore, these porphyrins can be tailored synthetically as needed via the introduction of different functional or conjugating groups to the molecular structures.

Other studies have reported the influence of altering the porphyrin structural features on interfacial electron injection,\(^16-25\) but we focus here on varying the linker group’s length. In a WS-DSPEC, a photosensitizer and its accompanying water-oxidation catalyst must be positioned in close proximity such that the hole can be efficiently transferred to the catalyst. Therefore, it is desirable to match the height of the dye to the height of the catalyst above the surface.\(^26\) The role of molecular linker lengths of dyads and photosensitizers for electron-injection dynamics on metal oxide surfaces has been studied by other groups using various techniques, but not including terahertz spectroscopy.\(^22, 27-36\) Albinsson and coworkers observed an attenuating dependence of singlet energy-transfer rate on increasing porphyrin-dyad linker length using absorption and emission spectroscopies.\(^32\) Lian and coworkers varied the linker lengths of Re complexes on \(\text{SnO}_2\) films with methylene units and found a decrease in the injection rate with increasing linker length using femtosecond infrared spectroscopy.\(^34\) However, there exists a gap in the literature in the use of terahertz spectroscopy coupled with computational modeling to study the relationship between linker length and electron-injection dynamics of free-based trimesityl porphyrins on \(\text{SnO}_2\), a metal oxide with appropriate energy levels for electron injection by high-potential porphyrins, which are promising photosensitizers for WS-DSPEC.\(^2, 23\) Herein, we discuss the synthesis, computational analysis, and characterization of electron-injection dynamics using terahertz (THz) spectroscopy of a series of five trimesitylporphyrins having varied molecular linker lengths (Figure 1). Three of these porphyrins (\(\text{P3, AC, and AN}\)) are new, and our novel synthetic methodologies are applicable to other porphyrin structures. Understanding the electron-injection dynamics of linkers with different lengths and properties will enable rational design and optimization of future porphyrin-based photosensitizers.
Figure 1. Molecular structures of trimesitylporphyrins used in this study.

2. Experimental Methods

2.1 Sample Preparation

All chemicals for synthesis were obtained commercially and used without further purification. For spectroscopic measurements, thin-film samples of each porphyrin on SnO\(_2\) films were prepared in triplicate on 25 mm × 25 mm × 1 mm fused silica slides (GM Associates). A paste of SnO\(_2\) nanoparticles with dimensions of 17-19 nm was prepared using a screen-printing paste procedure.\(^37\) The fused silica slides were outlined with Scotch Magic tape as spacer and were doctor-bladed with SnO\(_2\) paste, and then dried at 80 °C for 10 min. in air. This step was repeated to produce two layers of SnO\(_2\). The resulting films were sintered in a box furnace in air at 470 °C for 30 min. All SnO\(_2\)/quartz slides were sensitized in fresh 0.18 mM porphyrin solutions in dichloromethane for 9 h at room temperature in the dark.

2.2 Absorption and Emission

The steady-state absorption and emission spectra of ~2 μM of porphyrin solutions in a 1 cm x 1 cm quartz cuvette were obtained with a UV-visible spectrophotometer (Shimadzu UV-2600) and fluorometer (Horiba Scientific FluoroMax Plus), respectively. The emission spectra were acquired from 560 to 800 nm after exciting the porphyrins at 514 nm. The excited-state (S\(_1\)) potentials were estimated using the Rehm-Weller approximation.\(^23, 38\) Fluorescence quantum yields (Φ\(_F\)) were calculated using the equation:\(^39\)

\[
Φ_F = Φ_{ref} \left(\frac{A_{ref}}{A_s}\right) \left(\frac{I_s}{I_{ref}}\right) \left(\frac{η_s}{η_{ref}}\right)^2
\]

(1)

where the subscript \(s\) denotes the sample of interest, the subscript ref refers to the reference sample, \(A\) is the absorbance at the excitation wavelength, \(I\) is the integrated area of the emission spectra (Horiba Software), and η is the solvent refractive index.
2.3 Electrochemistry

Cyclic voltammetry (CV) measurements were conducted with a potentiostat (Pine WaveNow) in a three-electrode electrochemical cell using a glassy carbon working electrode, an Ag/AgCl wire pseudoreference electrode, and a platinum wire counter electrode. Carboxy-trimesitylporphyrins in dichloromethane (3 mM) were prepared for the experiments, and tetrabutylammonium hexafluorophosphate (TBAPF$_6$, 100 mM) in anhydrous dichloromethane was used as the supporting electrolyte. The glassy carbon electrode was polished with an alumina slurry in between each experiment. A ferrocenium/ferrocene redox couple was used as the internal standard to determine the potential of the pseudoreference electrode, which has an $E_{1/2}$ value of 0.690 V in dichloromethane versus normal hydrogen electrode (NHE). All of the CVs were recorded at a scan rate of 50 mV/s, and are referenced to the NHE.

2.4 Time-Resolved Terahertz Spectroscopy

Optical pump – THz probe spectroscopy (OPTP) was used to explore the ultrafast injection dynamics in trimesitylporphyrin/metal oxide systems. An ultrafast Ti:Sapphire laser system (Spectra-Physics Spitfire Ace) which has a 4 W output of 800 nm light at 1 kHz repetition rate and a 35 fs pulse width was utilized. The OPTP technique has been reported in many previous studies. The laser light is partitioned into the THz probe generation beam, the THz gate beam, and the optical pump beam. THz radiation is generated by focusing the 800 nm light and frequency-doubled 400 nm light into an air plasma source. The THz gate beam tracks the amplitude of the THz probe as a function of probe delay, t_{probe}, which is done by free space electro-optical sampling in a zinc telluride (ZnTe <110>) crystal. The optical pump beam at 400 nm was generated from the fundamental 800 nm beam with a 500 µm thick Type I β-barium borate crystal (BBO, Eskima Optics).

THz radiation is attenuated in the presence of free carriers in the metal oxide material upon photoexcitation. The peak amplitude of the THz pulse is monitored at a fixed t_{probe} as a function of optical pump delay, t_{pump}. A mechanical delay stage allows for a time delay between the optical and THz pulses. Electron-injection dynamics were probed over a ~1.8 ns time window. All measurements were taken as a function of t_{pump}, as the difference between the photoexcited and nonphotoexcited sample.

2.5 Quantum Chemistry Calculations

Density functional theory (DFT) was used to optimize all dye structures in an implicit dichloromethane polarizable continuum solvent at the B3LYP/6-31G(df,p) level of theory, using the Gaussian09 program. Frequency calculations were then performed to ensure the minimum energy geometry was stable. Linear-response time-dependent (TD)-DFT calculations were performed to obtain the five lowest-energy electronic transitions for each dye. Single point calculations at the B3LYP/6-311+G(2df,p) were then performed to obtain more accurate energetics and orbitals. This was repeated with unrestricted DFT for the singly oxidized states to obtain their spin isodensity plots. Structural optimizations of the excited S_1 state of the neutral dyes were carried out with TD-DFT in vacuum, corresponding to the OPTP experiments.
performed in air. Orbital and electron-density isosurfaces were generated with the Chimera software.49

Electron-injection calculations were performed, as previously described,50-53 using a tight-binding Extended Hückel (EH) Hamiltonian that reproduces a SnO\textsubscript{2} bandgap of 3.6 eV (see Table S8 for details). The geometry of the benzoate anchor bound to SnO\textsubscript{2} was obtained by geometry optimization at the B3LYP/6-31G(df,p)[C,H,O]/Def2SV[Sn]54 level of theory, using a model system composed of the benzoate group covalently bound to a Sn\textsubscript{12}O\textsubscript{42} cluster in a bidentate fashion. The adsorbate and the 13 SnO\textsubscript{2} atoms closest to the binding site were allowed to relax, while the rest of the system was fixed to preserve the geometry of the SnO\textsubscript{2} crystal. The acidic proton of the benzoic group was bound to a SnO\textsubscript{2} surface oxygen to retain overall charge neutrality. The partially optimized anchor+proton+cluster was inserted into a periodic Sn\textsubscript{72}O\textsubscript{144} slab, followed by attachment of the dye molecules in their S\textsubscript{18}state minimum energy conformations. The simulations of interfacial electron transfer were performed after initialization of the wave packet in a 50-50\% superposition of the dye LUMO and LUMO+1 states. Propagation with an integration time-step of 1 fs was performed for 2 ps. The SI contains images of the optimized model slab and full dye system as well as the EH LUMO, LUMO+1, and 50-50\% initial absorption state for the P\textsubscript{1} dye (Figure S6) and the initial state for all five dyes (Figure S7). Absorbing potentials were placed on the edge Sn atoms to mimic a semi-infinite slab and prevent artificial recurrence events due to the finite size of the model system. The time-dependent survival probability was computed to quantify the electronic population of the dye.

3. Results and Discussion

3.1 Molecular Design

The porphyrins synthesized for this study (Figure 1) are all meso-substituted porphyrins. These are very commonly used as photosensitizers55 because of their relatively facile synthesis and the range of molecular structures which can be obtained by condensing pyrroles and aldehydes bearing the desired meso-substituent.56 Specifically, these meso-porphyrins are “A3B” porphyrins, meaning that they have three identical (A3) substituents and one different one (B). In order to bind strongly to a metal oxide surface, a photosensitizer requires at least one linker-anchoring group.57 For all dyes in this study, we include only one linker–anchoring group to ensure that electron injection occurs though a single pathway into the SnO\textsubscript{2}. The chromophore properties are maintained while varying the linker because the meso-phenyl of the linker is almost perpendicular to the macrocycle, thereby decoupling the linker from the porphyrin ring. Trimesitylporphyrins are known to prevent intermolecular π-π aggregation by virtue of steric repulsion between the porphyrin ring and the mesityl ortho-methyl groups, which causes them to adopt an orientation perpendicular to one another.55 Unlike the findings of Sundström et al.22 we attribute all charge injection to occur through the conjugated linker and not via through-space injection which is due to the nature of the rigid anchor/linker systems chosen for this study. Aggregation can be a problem for purification as well as for the study of electron-injection dynamics by introducing other possible electron-transfer pathways. For P\textsubscript{1}, P\textsubscript{2} and P\textsubscript{3}, nonfunctionalized phenylene units were employed in the linker to prevent side reactions during their synthesis and to maintain high solubility.
This series of linkers provides a platform to systematically investigate injection dynamics as a function of distance to the SnO$_2$ surface while maintaining linear linker geometry of the photosensitizers relative to the surface. The lengths of AC and AN fall in-between P2 and P3, and the amide moiety was inspired by our previous work on Mn-terpy catalysts58 to study the role of conjugation in the linkers for these trimesitylporphyrins. The only difference between the two linkers is the orientation of the amide. This affects the electronic coupling and the orbital energy landscape because the carbonyl is electron withdrawing while the amine has an electron-donating effect on the adjacent π systems. 4-carboxylic acid moieties are common photosensitizer-anchoring groups that were used for both series of the porphyrin/linkers in order to ensure robust adsorption on SnO$_2$ surfaces in solution and in air.

3.2 Synthesis

a. Phenylene trimesityl porphyrins

5-(4-Methoxycarbonylphenyl)-10,15,20-tris(2,4,6-trimethylphenyl)porphyrin (P1) was synthesized using a reported procedure.59 Briefly, a 3:1 mixture of mesityl aldehyde and methyl 4-formylbenzoate was condensed with pyrrole with BF$_3$·OEt$_2$. The resulting species were then oxidized with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), in a procedure developed by Lindsey et al.,60 and then hydrolyzed under basic conditions. 5-(4-carboxyphenyl)-10,15,20-tris(2,4,6-trimethylphenyl)porphyrin (P2) and 5-(4-carboxytriphenyl)-10,15,20-tris(2,4,6-trimethylphenyl)porphyrin (P3) were synthesized using coupling reactions with the same precursor porphyrin 1 to produce an ample amount of material (Scheme 1). This precursor was then coupled under nitrogen with boronic esters L2-BE and L3-BE, having linkers of the desired lengths, to produce P2-Ester and P3-Ester in 80% and 87% yields, respectively. Hydrolysis of the two esters in basic aqueous conditions gave the desired final products P2 and P3 in 86% and 75% yields, respectively. Silica-based column chromatography was used to achieve high purity, a particular challenge for the carboxylic acid derivatives due to their favorable binding with the silica.
b. Synthesis of amide trimesityl porphyrins

The synthesis of 5-(4-carboxyphenylene-benzamido-phenyl)-10,15,20-tris(2,4,6-trimethylphenyl)porphyrin (AC) and 5-(4-carboxyphenylene-carbamoyl-phenyl)-10,15,20-tris(2,4,6-trimethylphenyl)porphyrin (AN) did not involve Pd-catalyzed coupling reactions like the phenylene series of porphyrins in Scheme 1 due to the vulnerability of the amide groups in the linkers especially to strong basic conditions, making it difficult for preparing the boronic esters of the linkers (Scheme 2). Both AC and AN were made via deprotection of their esters that have tert-butyl protecting groups. The synthesis of AC began with the conversion of P1 to an acyl chloride by modifying a procedure we reported,\(^{61}\) which was then rapidly treated with tert-butyl 4-aminobenzoate in dichloromethane containing a small amount of pyridine to produce AC-Ester in 81% yield. For porphyrin AN, nitroporphyrin 2 was reduced to 5-(4-aminophenyl)-10,15,20-trimesitylporphyrin (3) using a reported procedure,\(^{62}\) followed by coupling with 4-(tert-butoxycarbonyl)benzoic acid catalyzed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 1-hydroxybenzotriazole hydrate (HOBt Hydrate) under ambient conditions to afford AN-Ester in 64% yield.
3.3 Photophysical and Electrochemical Properties

The measured steady-state absorption and emission spectra maxima values are listed in Table 1. All five trimesityl porphyrins \textbf{P1}, \textbf{P2}, \textbf{P3}, \textbf{AC}, and \textbf{AN} exhibited almost identical absorption peaks with an intense Soret band at around 419 nm and four Q-band peaks in the range 514 to 657 nm (Figure S3). In general for all porphyrins, the Soret band is a result of two intense π-π^* transitions from the ground-state singlet (S_0) to an excited state pair collectively denoted S_2, while the Q-bands are due to two electronically excited states denoted S_1 (Q$_x$ and Q$_y$), which in free-base porphyrins each show a two-fold vibronic splitting. In addition to direct excitation from the ground state, the S_1 states can also be reached from an exothermic internal conversion process from S_2 following excitation in the Soret band. The character of these transitions as calculated by TD-DFT is listed for all dyes in Tables S2–S6 in the Supporting Information. The five porphyrins also have very similar fluorescence emission peaks, and the modest but consistent Stokes shifts have previously been rationalized from TD-DFT calculations showing structural relaxation of the excited state.23 The absorption and emission peaks are unaffected by changing the linkers at the \textit{meso}-positions, implying that the linkers do not affect the electronic structure of the porphyrin cores.

The absorption spectra of the five trimesitylporphyrins on SnO$_2$ surfaces are shown in Figure S3. The four peaks observed between 500 and 700 nm comprise the Q-band, and the superimposed spectra demonstrate that all peaks are identical across the series of dyes. This result confirms that the SnO$_2$ surfaces were sensitized with equal dye loading. When compared to the Q-band peaks

\begin{scheme}
\begin{center}
\includegraphics[width=\textwidth]{Scheme2}
\end{center}

\textbf{Scheme 2.} Synthesis of trimesitylporphyrins \textbf{AC} and \textbf{AN}.
\end{scheme}
of a representative trimesitylporphyrin in dichloromethane solution (not on SnO\textsubscript{2}), the peak positions are unchanged, indicating little to no chromophore–surface interaction, e.g. by face-to-face \(\pi\)-aggregation.63

The results pertaining to the electrochemical properties of the five trimesitylporphyrins also show that the different linkers have an insignificant influence on the porphyrin ring system; all dyes have similar oxidative midpoint potentials (\(E_{1/2}\)) vs. NHE (Figure S2). This is consistent with the highly uniform calculated absolute HOMO energies across the set, ranging from \(-5.44\) eV to \(-5.51\) eV vs. vacuum (see Table S7). Because the photoexcited electron will be transferred from the porphyrin to the conduction band of SnO\textsubscript{2}, the potential difference between the two represents the driving force for electron injection. The energy levels of the porphyrins were determined by obtaining the ground-state potentials of the porphyrin radical cation/porphyrin couple from the CV measurements, and calculating the \(E_{0-0}\) values (\(S_0 \rightarrow S_1\)) from UV-visible spectroscopic measurements. Free-base porphyrins typically show \(E_{0-0}\) values of 1.92 eV as all five of these dyes do (Table 1). The five porphyrins have similar estimated potentials of \(S_1\) states that are well above the SnO\textsubscript{2} conduction band edge (\(-0.05\) V vs. NHE), which makes their electron injections thermodynamically viable.

Table 1. Electrochemical and photophysical properties of carboxy-trimesitylporphyrins in dichloromethane.

<table>
<thead>
<tr>
<th>Porphyrin</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\lambda_{\text{ems}}) (nm)</th>
<th>(\Phi_f)^a</th>
<th>1st (E_{1/2}) (\text{b (V vs. NHE)})</th>
<th>2nd (E_{1/2}) (\text{b (V vs. NHE)})</th>
<th>(E_{0-0}) (\text{eV)})</th>
<th>(S_1) (\text{c (V vs. NHE)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>418, 514, 547, 590, 645</td>
<td>647, 714</td>
<td>0.082</td>
<td>1.23</td>
<td>1.70</td>
<td>1.92</td>
<td>-0.69</td>
</tr>
<tr>
<td>P2</td>
<td>419, 515, 549, 590, 646</td>
<td>648, 715</td>
<td>0.092</td>
<td>1.20</td>
<td>1.73</td>
<td>1.92</td>
<td>-0.72</td>
</tr>
<tr>
<td>P3</td>
<td>419, 515, 549, 590, 647</td>
<td>649, 716</td>
<td>0.088</td>
<td>1.22</td>
<td>1.70</td>
<td>1.92</td>
<td>-0.70</td>
</tr>
<tr>
<td>AC</td>
<td>418, 514, 548, 590, 645</td>
<td>647, 714</td>
<td>0.084</td>
<td>1.28</td>
<td>1.77</td>
<td>1.92</td>
<td>-0.64</td>
</tr>
<tr>
<td>AN</td>
<td>419, 514, 549, 590, 646</td>
<td>649, 714</td>
<td>0.088</td>
<td>1.21</td>
<td>1.74</td>
<td>1.92</td>
<td>-0.71</td>
</tr>
</tbody>
</table>

^a\text{determined in toluene relative to tetramesitylporphyrin in toluene (}\Phi_f = 0.088\)^b\text{midpoint potentials determined by cyclic voltammetry}^c\text{first excited state potentials determined by subtracting }E_{0-0}\text{ (Figure S1)}\text{ from }1\text{st }E_{1/2}

3.4 Electron-Injection Dynamics

Time-resolved THz spectroscopy is a unique tool for studying electron injection and trapping dynamics in photosensitizer/metal oxide systems.2,3, 5, 23, 51, 64 THz radiation is sensitive to the conductivity of photoinduced mobile electrons within the metal oxide’s conduction band (CB). The transient conductivity of the material is proportional to the product of the photoinduced carrier mobility, \(\mu\), and the carrier density, \(N\). Therefore, we monitor the population of photoinduced charge carriers as a function of optical pump delay, \(t_{\text{pump}}\), with sub-picosecond temporal resolution. When no mobile charges in are the CB, i.e. prior to photoexcitation, it is transparent to THz radiation. However, once the photosensitizer is photoexcited, mobile carriers
are injected into the CB of the metal oxide, and those charges both reflect and scatter the THz radiation which leads to a decrease in the THz transmission, ΔTHz.

In each porphyrin / metal oxide system, the trimesitylporphyrin is excited with 400 nm light at a pump fluence of 100 μJ/cm2. The same trimesitylporphyrin photosensitizer core and carboxylic acid anchor group are used in for each one. Only two quantities are varied: the length ($P_1 < P_2 < AC < AN < P_3$), and the overall molecular conjugation and electronic effects due to the positioning of the nitrogen/oxygen groups of the linker (P_1, P_2, P_3 vs. AC, AN).

Lian et al. previously studied the electron-injection rates of a rhenium-based photosensitizer attached to TiO$_2$ as a function of molecular linker lengths by inserting CH$_2$ spacers using fs-transient mid-IR spectroscopy.65 They observed a non-linear trend in the injection rate as a function of length by monitoring intraband transitions, free carrier absorption, and absorption of trap states. On the other hand, we directly measure mobile electrons within the metal oxide’s CB.$^{65-66}$ Therefore, we monitor the overall timescales of injection from the singlet states (both S_1 and S_2) into the CB of SnO$_2$.2,5,23 Figure 2 presents the OPTP traces of dye-sensitized films on SnO$_2$ while varying the length of the linkage between the trimesitylporphyrin and the carboxylate anchor. The length of P_1 (8.58 Å), P_2 (12.91 Å), P_3 (17.24 Å), AC (15.04 Å), and AN (15.11 Å) were determined through ground state electronic structure geometry optimizations (Figure S8). These distances are measured from the DFT-optimized structures as the distance between the meso-carbon at the edge of the porphyrin ring and the anchor carbonyl carbon and adding it to the distance between the anchoring oxygen atoms and the nearest Sn atom.

The OPTP transients are well-described by a biexponential injection rate (k_1, k_2) and a single exponential trapping rate (k_{trap}), which is described as:5,23

$$-\Delta THz = \left[A_1 \left(1 - e^{-tk_1}\right) + A_2 \left(1 - e^{-tk_2}\right) - \left(A_1 + A_2 \right) \left(e^{-tk_{\text{trap}}} - 1\right) \right] \otimes G_{\text{FWHM}}(2)$$

The two injection rates have amplitudes A_1 and A_2, while the amplitude of trapping, A_{trap}, is the sum of A_1 and A_2. This ensures that $-\Delta THz \to 0$ as $t \to \infty$. During best-fit optimization, the injection and trapping dynamics are convoluted with a Gaussian instrument response function that corresponds to 500 fs (full-width at half-maximum). Best-fit parameters along with standard deviations are given in Table S1, and the injection rates, k_1 and k_2, are plotted against linker length in Figure 3.
Figure 2. OPTP traces of P1 (red), P2 (blue), P3 (green), AC (dashed black), and AN (solid black) are normalized based on their best fit amplitudes from Equation 2 to compare the overall ultrafast dynamics as a function of linker length. In each case, the porphyrin was photoexcited with 400 nm light at a fluence of 100 µJ/cm².

Electron transfer rates are often interpreted in the context of Marcus theory in the weak coupling limit (i.e. where \(V \ll k_bT \)). Under equilibrium conditions (\(\Delta G^0 = 0 \)), the rate of electron transfer from the donor (trimesitylporphyrin) to the acceptor (CB of SnO₂) can be modeled, as follows:

\[
k = \frac{2\pi}{\hbar} |V|^2 \frac{1}{\sqrt{4\pi \lambda k_b T}} \exp \left(-\frac{\lambda}{4 k_b T} \right)
\]

where \(k \) is the electron transfer rate, \(\lambda \) is the reorganization energy, \(k_b \) is the Boltzmann constant, \(T \) is the temperature in Kelvin, and \(V \) is the electronic coupling. The electronic coupling is typically exponentially dependent on the donor and acceptor distance, \(R \),

\[
V = V_0 \exp \left(-\frac{\beta(R - R_0)}{2} \right)
\]

where \(R_0 \) is the donor-acceptor van der Waals separation, and \(\beta \) is the electron tunneling scalar. \(\beta \) is an important metric that constitutes an overall measure of the conjugation in the donor–acceptor bridge. It ranges from 0 Å⁻¹ in a fully conjugated system to 2.8 Å⁻¹ in vacuum. Due to the similar absorbance traces of each porphyrin, we assume that the reorganization energy, \(\lambda \), and \(\Delta G \) are independent of molecular linker length, Equation 3 can be simplified to depend only on donor-acceptor distance and the \(\beta \) parameter:

\[
k \propto V^2 \propto V_0^2 \exp \left(-\beta(R - R_0) \right)
\]

Using this relation, the best-fit rates obtained from Equation 5 are plotted as a function of edge-to-edge distance between the electron donor and acceptor, as seen in Figure 3. Due to the similarity of P1, P2, and P3, it is expected that the only factor differentiating the electron-
transfer rates between them would be the effective distance between the donor and acceptor groups. That is, the conjugation strength remains nearly identical with the addition of phenylene rings from phenylene, to biphenylene, to terphenylene. Therefore, when the common logarithm of rates k_1 and k_2 are plotted as a function of edge-to-edge distance between donor and acceptor, the relationship is linear. The slope of the best-fit line determines the β parameter.

![Figure 3. Plot of the common log of the extracted rate constants k_1 and k_2 versus edge-to-edge distance. Their associated standard deviations are displayed as well. The best fit lines for P1, P2, and P3 are shown with dotted black lines.](image)

Not surprisingly, the β parameters for injection from the S_1 and S_2 state were statistically indistinguishable. While P1, P2, and P3, show similar conjugation, AC and AN differ slightly due to their amide group in the molecular linker. Ultrafast electron-injection dynamics do not show a large difference between AC and AN, which indicates that the charge-injection rate is not significantly affected by the amide orientation of the linker for the trimesitylporphyrins within our system. The similarity between injection rates for AC and AN differs from our past studies where the amide group was directly attached to the photosensitizer core. This difference arises because the extra phenyl ring between the porphyrin core and the amide group prevents direct interaction of the relevant porphyrin core orbitals. Finally, the rate of trapping, k_{trap}, is not influenced by the molecular linker length. It was globally fit and found to be 6.25×10^7 s$^{-1}$ which is consistent with our past work on dye-sensitized SnO$_2$.

3.5 Computational Analysis

The electronic and optical properties calculated with DFT and TD-DFT are broadly in agreement with experiments (see Table S2–S6 in the Supporting Information). The calculated orbital energies and electronic transitions verify that the linker has a limited effect on the porphyrin-
centered Gouterman70 orbitals HOMO–1, HOMO, LUMO, and LUMO+1. These frontier orbitals are shown in Figure 4 for representative dye P1, along with the meso-substituent-centered HOMO–2 and LUMO+2. Figure 4 also shows the calculated spin density of the singly oxidized form of P1. The correspondence to the HOMO shows that oxidizing the porphyrin effectively removes an electron from the HOMO. The frontier orbitals for the remaining four dyes are shown in Figure S5. For these molecules, the HOMO–2 and LUMO+2 show a small degree of variance stemming from the differing linkers.

![Figure 4](image-url)

Figure 4. DFT frontier orbitals of P1 (top) and the spin density of the singly oxidized state (bottom), where cyan and magenta represent spin up and down respectively. Analogous isodensity plots for the other dyes are found in Figure S5.
Electron-injection dynamics simulations based on a tight-binding Extended Hückel (EH) Hamiltonian were performed with the wave packet initialized in LUMO and LUMO+1, the target orbitals for excitations in both the Q and Soret absorption bands (see Table S2–S6). Figure 5 shows the results of the simulated injection dynamics, where the trends largely agree with the experimental OPTP results (Figure 2). In absolute terms, the calculations overestimate the injection rate due to known limitations of the semiempirical method.51 Nevertheless, both in experiments and simulations, AC and P3 exhibit similar relaxation dynamics, while the P series shows a successive decrease in injection rate with increasing linker length consistent with previous studies on porphyrin-to-SnO\textsubscript{2} injection.50

The calculated injection rate of AN on the other hand, is overestimated relative to the other dyes. In AN, the \(\pi^* \) band of the carbonyl–benzoate part of the linker is stabilized slightly by the electron-withdrawing carbonyl, making the movement of electron density into this region more thermodynamically favorable and promoting the general movement of density toward the anchor and the semiconductor. The stabilization of the linker \(\pi^* \) band in AN is reflected in a very deep LUMO+2 orbital (Figure S5 and Table S7), and its LUMO delocalization is visualized in Figure S5. In our EH calculations, this \(\pi^* \) stabilization is greatly overestimated when compared to DFT, leading to the unphysically fast injection calculated for the AN system, see Table S9.

Figure 5. Extended Hückel electron-dynamics results showing the increase over time of the wave packet (WP) population on the SnO\textsubscript{2}.

4. Conclusion and Outlook
A series of five trimesitylporphyrins have been synthesized and probed using ultrafast spectroscopy to determine the role of molecular linker length and conjugation in regard to the rate of electron injection from the singlet states (S_1 and S_2). Our studies have demonstrated that the porphyrin / linker / anchor / metal oxide systems have an exponential relationship between interfacial electron-injection rates and the porphyrin-surface distance.

The P1, P2, and P3 linkers exhibit an electronic coupling factor (β) of $0.22 \pm 0.02 \text{ Å}^{-1}$, which is consistent with what would be expected from Marcus theory in the limit of weak electronic coupling. The injection rates of AC and AN are lower than the trend established by the P series, likely due to their decreased conjugation strength. The lower injection rates are attributed to charge-transfer barriers in the amide linkers which are likely due to their lack of conjugation, and also to their phenylene components. DFT calculations of optoelectronic properties emphasize the important role of the frontier orbitals (HOMO−1 through LUMO+1). Simulations of interfacial electron-transfer dynamics enabled characterization of the injection process at the molecular level, yielding relative injection trends in good agreement with experiments. Future efforts will focus on studying the pH, solvent, and temperature-dependent effects on the electron-injection rates with varying linker length.

ASSOCIATED CONTENT

Supporting Information.

The Supporting Information is available free of charge on the ACS Publications website at DOI: XXX.

Synthesis, characterization, electrochemical and computational details of the reported carboxy-trimesitylporphyrins (PDF).

AUTHOR INFORMATION

Corresponding Author

*Corresponding Authors

203-432-5202 gary.brudvig@yale.edu
203-432-5049 charles.schmuttenmaer@yale.edu
203-432-6672 victor.batista@yale.edu
203-200-8936 robert.crabtree@yale.edu

Author Contributions

‡S.H.L and K.P.R contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank the staff at Yale West Campus Analytical Core, Yale Chemical and Biophysical Instrumentation Center, and Yale WM Keck Foundation Biotechnology Resource Laboratory for their help with instrumentation. This work was supported by the U.S. Department of Energy, Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science (Grant DEFG02-07ER15909). Additional support was provided by a generous donation from the TomKat Charitable Trust. VSB acknowledges computational time from NERSC and Yale HPC.

References

