Simulating Open Quantum System Dynamics on NISQ Computers with Generalized Quantum Master Equations

Yuchen Wang, Ellen Mulvihill, Zixuan Hu, Ningyi Lyu, Saurabh Shivpuje, Yudan Liu, Micheline B. Soley, Eitan Geva,* Victor S. Batista,* and Sabre Kais*

Cite This: https://doi.org/10.1021/acs.jctc.3c00316

ABSTRACT: We present a quantum algorithm based on the generalized quantum master equation (GQME) approach to simulate open quantum system dynamics on noisy intermediate-scale quantum (NISQ) computers. This approach overcomes the limitations of the Lindblad equation, which assumes weak system–bath coupling and Markovity, by providing a rigorous derivation of the equations of motion for any subset of elements of the reduced density matrix. The memory kernel resulting from the effect of the remaining degrees of freedom is used as input to calculate the corresponding non-unitary propagator. We demonstrate how the Sz.-Nagy dilation theorem can be employed to transform the non-unitary propagator into a unitary one in a higher-dimensional Hilbert space, which can then be implemented on quantum circuits of NISQ computers. We validate our quantum algorithm as applied to the spin-boson benchmark model by analyzing the impact of the quantum circuit depth on the accuracy of the results when the subset is limited to the diagonal elements of the reduced density matrix. Our findings demonstrate that our approach yields reliable results on NISQ IBM computers.

1. INTRODUCTION

Simulations of open quantum systems have become essential for studying the dynamics of quantum systems in the condensed phase, allowing for the inclusion of dissipative effects from the environment which are critical for accurate simulations. These powerful computational tools have enabled a wide range of studies, from chemical and physical processes to excited-state lifetimes, spectral diffusion, and line broadening, across multiple fields of research, including physical chemistry, molecular physics, condensed-phase physics, nanoscience, molecular electronics, quantum optics, nonequilibrium statistical mechanics, spectroscopy, and quantum information science.1−30

Examples of open quantum system dynamics include energy and charge transfer, dephasing, vibrational relaxation, non-adiabatic dynamics, and photochemistry (see Figure 1). By harnessing the power of open quantum system simulations, we can bridge the gap between theory and experiment, providing insight into various complex phenomena in a variety of light-induced physical and chemical processes, including photo-induced processes such as energy and charge transfer, vibronic relaxation, dephasing, and nonadiabatic dynamics.22,23,28,31−49

Recent advances in quantum computing have enabled the development of numerous algorithms for electronic structure calculations50−53 and simulations of quantum dynamics of closed quantum systems.54−57 However, relatively few studies have explored the simulation of open quantum system dynamics.58−67 These studies have been mostly based on Lindblad-type quantum master equations (QMEs), which ensure complete positivity and conservation of probability but rely on the Markov and Born approximations in the system–bath weak coupling limit.7 With the aim of developing a more general approach, here we introduce a quantum algorithm based on the generalized quantum master equation (GQME), which corresponds to the formally exact equation of motion (EoM) for an open quantum system.

A major challenge facing the quantum simulation of open quantum system dynamics is the fact that the time evolution operators are non-unitary whereas quantum gates are unitary. To this end, we have previously developed a quantum algorithm for open quantum dynamics based on the Sz.-Nagy unitary dilation theorem, which converts non-unitary operators into unitary operators in an extended Hilbert space. This algorithm was originally applied to simulating a Markovian two-level model on IBM quantum computers.68 Later, the same method was applied to simulating the non-Markovian Jaynes–
Cummings model on IBM quantum computers. In a recent work, the same Lindblad-QME-based quantum algorithm was applied to simulate the dynamics of the FennaMatthewsOlson complex, which includes five quantum states and seven elementary physical processes. Thus far, this quantum algorithm has been used to simulate the dynamics of open quantum systems described by the operator sum representation or Lindblad-type QMEs. However, these approaches are not entirely general: the Lindblad QME used in ref 70 relies on several restrictive approximations, including Markovian dynamics, and the ensemble of Lindbladian trajectories method in ref 69, while capable of describing non-Markovian dynamics, involves user selection of ad hoc system-bath parameters, therefore limiting the range of applications. Furthermore, while the operator sum representation of open quantum system dynamics is general, it requires knowledge of the Kraus operators, which to the best of our knowledge are only known in closed form for systems whose dynamics can be described by Lindblad-type QMEs.

Extending the range of quantum simulation of open quantum systems therefore calls for formulating the dynamics within a less restrictive theoretical framework. The GQME formalism introduced by Nakajima and Zwanzig represents such a general framework since the GQME corresponds to the formally exact EoM of the open quantum system, as opposed to the Lindblad-type QMEs, which correspond to approximate EoMs of the open quantum system.

A comparison of the workflows for simulating the dynamics of a closed quantum system governed by the quantum Liouville equation versus an open quantum system governed by the GQME is shown in Figure 2. The derivation of the GQME involves projecting out the bath degrees of freedom (DOF) to obtain the EoM of the system’s reduced density matrix, or a subset of its elements. Within this EoM, which is referred to as the GQME, the memory kernel superoperator, $\mathcal{K}(\tau)$, accounts for the main impact of the bath on the system’s dynamics. Thus, the GQME replaces the Liouville equation as the formally exact EoM of the system when we transition from a closed quantum system to an open quantum system, with the memory kernel playing a similar role in the open system as the Hamiltonian or Liouvillian in the closed system.

In this work, we develop a GQME-based quantum algorithm for simulating the dynamics of an open quantum system. To this end, we develop a protocol for obtaining the non-unitary time evolution superoperator, or propagator, from the memory kernel. Then the Sz.-Nagy unitary dilation theorem is used to convert the GQME-based non-unitary propagator into a unitary superoperator in an extended Hilbert space. Given this dilated and now unitary time evolution superoperator and the initial state of the system, we can evolve the dynamics for any open quantum system on quantum computers.

Given the fact that the GQME is the exact EoM of the open quantum system, this quantum algorithm greatly extends the range of possible systems that can be simulated on a quantum computer, including complex non-Markovian photosynthetic and photovoltaic systems, molecular electronics, linear and nonlinear spectroscopy, systems with intersystem crossing, and conical intersections. Thus, this GQME-based quantum algorithm provides an essentially universal protocol for

Figure 1. Simulation of open quantum system dynamics is central to many science and engineering disciplines (a few examples are showcased in the figure).

Figure 2. A comparison of the workflows for simulating the dynamics of a closed quantum system governed by the quantum Liouville equation vs an open quantum system governed by the GQME. 1. The EoM is established. 2. The time evolution superoperator is generated from the EoM. 3. A unitary dilation is required in order to convert the GQME-based non-unitary time evolution superoperator into a unitary superoperator in an extended Hilbert space. 4. The unitary matrix is translated into a quantum gate sequence.
simulating open quantum system dynamics on quantum computing platforms. Given a powerful enough quantum computer, this algorithm opens the door for simulating open quantum system dynamics of large and complex molecular systems, which are currently beyond the reach of classical computers.

2. METHODS

2.1. GQME-Based Propagators. In this section, we outline our approach for calculating the GQME-based non-unitary propagator for the reduced density matrix of the open quantum system (see eq 9). The analogous procedure for calculating the non-unitary propagator for a subset of the reduced density matrix elements is outlined in section 3.2.

Previously developed quantum algorithms for open system dynamics involved mapping Lindblad operators to Kraus operators before using the Sz.-Nagy dilation theorem to reach a unitary quantum algorithm. While useful for many systems, these methods are either Markovian or involve user selection of ad hoc system—bath parameters, therefore limiting the range of applications. In this paper, we introduce a method based on the GQME, a formally exact EoM for the dynamics of an open quantum system. Instead of casting the non-unitary propagator in terms of Kraus operators and dilating them, this method uses the GQME to obtain the system’s time evolution propagator, and performs the dilation on it to obtain a unitary quantum algorithm. This subsection describes the first step in the workflow outlined in Figure 2, namely, obtaining the time evolution superoperator of an open quantum system starting from its formally exact EoM in GQME form.

For the sake of concreteness, we will focus on molecular systems with an overall Hamiltonian of the following commonly encountered form:

\[\hat{H} = \sum_{j=1}^{N_e} \hat{H}_j |j\rangle \langle j| + \sum_{j,k=1}^{N_e} \hat{V}_{jk} |j\rangle \langle k| \]

and an overall system initial state of the following commonly assumed single-product form:

\[\hat{\rho}(0) = \hat{\rho}_n(0) \otimes \hat{\sigma}(0) \]

With this assumption, the evolution is guaranteed to be described by a completely positive (CP) map. It should be noted that the GQME approach is not limited to this form of Hamiltonian and initial state and that the choice to focus on them is solely motivated by clarity of presentation and the wide range of applications based on a Hamiltonian and initial state of this form. The system and bath in this case correspond to the electronic and nuclear DOF, respectively. Throughout this paper, boldfaced variables (e.g., \(A \)) indicate vector quantities; a hat over a variable (e.g., \(\hat{B} \)) indicates an operator quantity; and calligraphic font (e.g., \(\mathcal{L} \)) indicates a superoperator.

Using projection operator techniques, one can then derive the following formally exact EoM, or GQME, for the reduced electronic density operator, \(\hat{\sigma}(t) \):

\[\frac{d}{dt} \hat{\sigma}(t) = -\frac{i}{\hbar} \mathcal{L}_n \hat{\sigma}(t) - \int_0^t d\tau \mathcal{K}(\tau) \hat{\sigma}(t - \tau) \]

The open quantum system dynamics of the reduced electronic density matrix described by this GQME is generated by the two projected overall system Liouvillian \(\mathcal{L}_0 = Tr_n(\hat{\rho}_n(0) \mathcal{L}) \) (where \(\mathcal{L}(\cdot) = [\hat{H}, \cdot] \) is the overall system Liouvillian and \(Tr_n(\cdot) \) is the partial trace over the nuclear (bath) Hilbert space), which is represented by an \(N_e^2 \times N_e^2 \) time-independent matrix.

The GQME formalism provides a general framework for deriving the exact EoM for any quantity of interest. The derivation begins with the Nakajima–Zwanzig equation, which describes the dynamics of a projected state \(\mathcal{P}\hat{\rho}(t) \), where \(\mathcal{P} \) is a projection superoperator and \(\hat{\rho}(t) \) is the density operator of the overall system:

\[\frac{d}{dt} \mathcal{P}\hat{\rho}(t) = -\frac{i}{\hbar} \mathcal{L} \mathcal{P}\hat{\rho}(t) - \frac{1}{\hbar^2} \int_0^t d\tau \mathcal{P} \mathcal{L} e^{-\mathcal{Q}(\tau)/\hbar} \mathcal{L} \mathcal{P}\hat{\rho}(t - \tau) + \frac{1}{\hbar^2} \mathcal{P} \mathcal{L} e^{-\mathcal{Q}(0)/\hbar} \mathcal{L} \mathcal{P}\hat{\rho}(0) \]

Here \(\mathcal{L} \) is the overall system—bath Liouvillian and \(\mathcal{Q} = 1 - \mathcal{P} \) is the complementary projection superoperator to \(\mathcal{P} \). Importantly, the only requirements are that \(\mathcal{L} \) is Hermitian and \(\mathcal{P} \) satisfies \(\mathcal{P}^2 = \mathcal{P} \). Otherwise, there is complete flexibility in the choice of \(\mathcal{L} \) and \(\mathcal{P} \), with each choice leading to a different GQME for a different quantity of interest.

Following ref 27, we focus on an overall system—bath Hamiltonian of the form of eq 1 and the following choice of projection operator which gives rise to the GQME for the system reduced density matrix, \(\hat{\sigma}(t) \):

\[\mathcal{P}(\hat{A}) = \hat{\rho}_n(0) \otimes Tr_n[\hat{A}] \]

With this choice of \(\mathcal{P} \), we have \(\mathcal{Q}(\hat{\rho}_n(0)) = 0 \). Plugging eq 5 into eq 4 and tracing over the nuclear (bath) Hilbert space leads to the GQME in eq 3. The memory kernel in eq 3 is given by

\[\mathcal{K}(\tau) = \frac{1}{\hbar^2} Tr_n[\mathcal{L} e^{-\mathcal{Q}(\tau)/\hbar} \mathcal{L} \hat{\rho}_n(0)] \]

and can be obtained by solving the following Volterra equation:

\[\mathcal{K}(\tau) = i\mathcal{F}(\tau) - \frac{1}{\hbar} \mathcal{F}(\tau) (\mathcal{L}_n^\dagger + i \int_0^\tau d\tau' \mathcal{F}(\tau - \tau') \mathcal{K}(\tau')) \]

Here \(\mathcal{F}(\tau) \) and \(\mathcal{F}(\tau) \) are the so-called projection-free inputs (PFIIs), which are given by

\[\mathcal{F}(\tau) \]

https://doi.org/10.1021/acs.jctc.3c00316
\[\mathcal{F}(\tau) = \frac{1}{\hbar}Tr_{n_1}(Le^{-L_{en}/\hbar}H(0)) \]

\[\mathcal{F}'(\tau) = -\frac{i}{\hbar}Tr_{n_1}(Le^{-L_{en}/\hbar}L_{H}(0)) \]

(8)

The memory kernels for the spin-boson model used in this paper were adopted from ref 78, where they were obtained from quantum-mechanically exact PFFs calculated via the tensor-train thermo-field dynamics (TT-TFD) method.

The quantum open system’s non-unitary time evolution superoperator, or propagator, \(\mathcal{G}(t) \), is defined by

\[\hat{\sigma}(t) = \mathcal{G}(t)\hat{\sigma}(0) \] (9)

Substituting eq 9 into eq 3 and noting that the GQME should be satisfied for an arbitrary choice of \(\hat{\sigma}(0) \), it is straightforward to show that \(\mathcal{G}(t) \) satisfies the same GQME as \(\hat{\sigma}(t) \):

\[\frac{d}{dt} \mathcal{G}(t) = -\frac{i}{\hbar}(L_{H}^{\dagger} \mathcal{G}(t) - \mathcal{G}(t)L_{H}) - \int_0^t d\tau \mathcal{K}(\tau)\mathcal{G}(t-\tau) \] (10)

Thus, given the projected Liouvillian and memory kernel (\(L_{H}^{\dagger} \) and \(\mathcal{K}(\tau) \), respectively), \(\mathcal{G}(t) \) can be obtained by solving eq 10 numerically, which in this work was accomplished via a Runge–Kutta fourth-order (RK4) algorithm. This superoperator, \(\mathcal{G}(t) \), serves a role similar to that of the Kraus operators in the operator sum representation and can also be dilated to a unitary form which can be implemented on a quantum computer. Importantly, while the Kraus operators are only known in closed form for the Markovian Lindblad equation, the nonunitary propagator \(\mathcal{G}(t) \) can always be obtained from the formally exact GQME (see eq 10).

2.2. A GQME-Based Quantum Algorithm for Simulating Open Quantum System Dynamics. In this subsection, we describe the next step in the workflow outlined in Figure 2, namely, using the Sz.-Nagy unitary dilation procedure\(^79\) to convert the non-unitary quantum open system propagator \(\mathcal{G}(t) \) (see eqs 9 and 10) into a unitary propagator in an extended Hilbert space. It should be noted that the Sz.-Nagy unitary dilation procedure is one out of several methods that can convert non-unitary operators into unitary operators (e.g., block-encoding represents an alternative method\(^80,81\)).

The Sz.-Nagy unitary dilation procedure starts out by calculating the operator norm of \(\mathcal{G}(t) \) to determine whether it is a contraction. For \(\mathcal{G}(t) \) to be a contraction, the operator norm of \(\mathcal{G}(t) \) needs to be less than or equal to 1, i.e., \[\|\mathcal{G}(t)\|_\infty = \sup \frac{\|\mathcal{G}(t)\|_2}{\|\mathcal{I}\|_2} \leq 1. \] In the case where the original \(\mathcal{G}(t) \) is not a contraction, we introduce a normalization factor \(n_i = \|\mathcal{G}(t)\|_\infty \) in order to define a contraction form of \(\mathcal{G}(t) \), namely, \(\mathcal{G}'(t) = \mathcal{G}(t)/n_i \).

In the next step, we apply a 1-dilation procedure to \(\mathcal{G}'(t) \) to obtain a unitary propagator \(\mathcal{U}_G(t) \) in an extended Hilbert space of double the dimension of the original system’s Hilbert space:

\[\mathcal{U}_G(t) = \begin{pmatrix} \mathcal{G}'(t) & \mathcal{D}_G(t) \\ \mathcal{D}_G(t)^{-1} & -\mathcal{G}'(t) \end{pmatrix} \] (11)

In this equation, \(\mathcal{D}_G(t) = \sqrt{1 - \mathcal{G}'(t)\mathcal{G}'(t)} \) and \(\mathcal{D}_G(t)^{-1} = \sqrt{1 - \mathcal{G}'(t)\mathcal{G}'(t)} \), where \(\mathcal{D}_G(t) \) is the so-called defect superoperator of \(\mathcal{G}'(t) \). The 1-dilation procedure generates a unitary superoperator \(\mathcal{U}_G(t) \) that operates in the extended Hilbert space and replicates the effect of the contraction form of the original time evolution superoperator, \(\mathcal{G}(t) \), when the input and output vectors are both projected onto the original smaller Hilbert space.

In the original system’s Hilbert space, the system reduced density operator \(\hat{\sigma}(t) \) is represented by an \(N_e \times N_e \) matrix:

\[\hat{\sigma}(t) \equiv \begin{pmatrix} \sigma_{11}(t) & \cdots & \sigma_{N_e}(t) \\ \vdots & \ddots & \vdots \\ \sigma_{N_e}(t) & \cdots & \sigma_{N_eN_e}(t) \end{pmatrix} \] (12)

Alternatively, the same system reduced density operator can also be represented by an \(N_e^2 \)-dimensional vector in Liouville space:

\[\hat{\sigma}(t) \equiv (\sigma_{11}(t), \ldots, \sigma_{N_e}(t), \ldots, \sigma_{N_eN_e}(t))^T \] (13)

Since the GQME formalism is given in terms of superoperators, it is convenient to work in Liouville space, which we will do from this point on. We also define the norm of the vector representing \(\hat{\sigma}(t) \) in Liouville space as the Frobenius norm:

\[||\sigma(t)||_F = \sqrt{\sum_{i=1}^{N_e^2} |\sigma_{ij}(t)|^2} \] and divide \(\hat{\sigma}(t) \) by \(||\sigma(t)||_F \) to normalize \(\hat{\sigma}(t) \).\(^68\)

Given the dilated unitary operator \(\mathcal{U}_G(t) \) and the initial quantum input state \(\hat{\sigma}(0) \), operation with the non-unitary \(\mathcal{G}'(t) \) on \(\hat{\sigma}(0) \) has now been converted into a unitary transformation as follows:

\[\mathcal{U}_G(t)\hat{\sigma}(0) \xrightarrow{\text{unitary dilation}} \mathcal{U}_G(t)(\hat{\sigma}(0)^T, 0, \ldots, 0)^T \] (14)

The zeroes in the input vector on the R.H.S. are added to match the dimension of the input vector with that of \(\mathcal{U}_G(t) \). The unitary process can then be simulated on a quantum circuit with unitary quantum gates. The electronic populations, \(\{\sigma_{ij}(t) \equiv (|l\hat{\sigma}(t)||l) = 1, \ldots, N_e\} \), can be retrieved by taking the square root of the probability of measuring each basis state, \(P_l = |\sigma_{ij}(t)|^2 \), and multiplying by the \(n_i \) factor.

Finally, we perform a complexity analysis of the quantum algorithm. Given that \(\mathcal{G}'(t) \) in its most general form is represented by a matrix of \(N_e^4 \) nonzero elements, the defect superoperators \(\mathcal{D}_G(t) \) and \(\mathcal{D}_G'(t) \) as well as \(-\mathcal{G}'(t) \) as shown in eq 11 all have \(N_e^4 \) nonzero elements. Generally speaking, the number of two-level unitaries necessary to decompose a unitary gate is comparable to the number of nonzero elements in the lower-triangular part of the gate.\(^82\) Therefore, the gate complexity to simulate this specific \(\mathcal{U}_G(t) \) is \(O(N_e^2) \). When the two-level unitaries are further decomposed into 1-qubit and 2-qubit elementary gates commonly used to design conventional quantum circuits, they need to be transformed to the Gray code sequences and some multicontrol gate sequences, adding another factor of complexity logarithmic in \(N_e^2 \), and the total complexity becomes \(O(N_e^4 \log^2 N_e^2) \).\(^83\) This means that the maximum total complexity of a GQME-based simulation of the dynamics of an open quantum system is comparable to that of classical methods.\(^84\) However, as demonstrated in previous simulations of certain dynamical models, our quantum algorithm can take advantage of the case when \(\mathcal{G}'(t) \) is a sparse
matrix, and thus, the gate complexity scaling for $g(t)$ can be reduced to $O(N^2 \log N)$ instead of $O(N^4 e)$.

3. RESULTS

3.1. A Demonstrative Application to the Spin-Boson Model.

In this subsection, we test the applicability of the quantum algorithm outlined in the previous sections on the spin-boson benchmark model. This model and its derivatives have a wide range of applicability to chemical and physical systems, including electron, proton, energy, and charge transfer processes; polaron formation and dynamics in condensed-phase environments; vibrational relaxation; impurity relaxation in solids; spin–lattice relaxation; and qubit decoherence.

It should also be noted that quantum-mechanically exact memory kernels for this model are available.

The spin-boson Hamiltonian has the form of eq 1 with $N_e = 2$ and $\{\hat{H}, \hat{V}_{jk}\}$ given by

$$\hat{H}_0 \equiv \hat{H}_D = \epsilon + \sum_{k=1}^{N_e} \frac{\hat{B}_k^2}{2} + \frac{1}{2} \omega_k \hat{R}_k^2 - \xi \hat{R}_k$$

$$\hat{H}_1 \equiv \hat{H}_A = -\epsilon + \sum_{k=1}^{N_e} \frac{\hat{B}_k^2}{2} + \frac{1}{2} \omega_k \hat{R}_k^2 + \xi \hat{R}_k$$

$$\hat{V}_{01} \equiv \hat{V}_{DA} = \hat{V}_{10} \equiv \hat{V}_{AD} = \Gamma$$

Here the two electronic states are designated as the donor and acceptor (|D⟩ and |A⟩, respectively). 2ϵ is the shift in equilibrium energy between the D and A states, and Γ is a positive constant describing the electronic coupling between the D and A states. Since Γ is a constant, this system is assumed to satisfy the Condon approximation.

The results shown below were obtained for the case where the nuclear modes’ frequencies and coupling coefficients $\{\omega_k, \xi_k\}$ are sampled from an Ohmic spectral density with exponential cutoff:

$$J(\omega) = \frac{\pi}{2} \sum_{k=1}^{N_n} \frac{\xi_k^2}{\omega_k} \delta(\omega - \omega_k) \xrightarrow{N_n \to \infty} \frac{\pi \xi}{2} \omega e^{-\omega/\omega_c}$$

Here ξ is the Kondo parameter and ω_c is the cutoff frequency. The reader is referred to Appendix C of ref 27 for a description of the procedure used to obtain a discrete set of N_n nuclear mode

Table 1. Spin-Boson Model and Simulation Parameters

<table>
<thead>
<tr>
<th>model no.</th>
<th>ϵ</th>
<th>Γ</th>
<th>β</th>
<th>ξ</th>
<th>ω_c</th>
<th>ω_{max}</th>
<th>N_n</th>
<th>Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>5.0</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>60</td>
<td>1.50083×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>5.0</td>
<td>0.1</td>
<td>2.0</td>
<td>1.0</td>
<td>60</td>
<td>1.50083×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.0</td>
<td>5.0</td>
<td>0.4</td>
<td>2.0</td>
<td>1.0</td>
<td>60</td>
<td>1.50083×10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>1.0</td>
<td>5.0</td>
<td>0.2</td>
<td>2.5</td>
<td>1.0</td>
<td>60</td>
<td>4.50249×10^{-3}</td>
</tr>
</tbody>
</table>

Figure 3. Spin-boson model simulated by the GQME-based quantum algorithm as implemented on the IBM QASM quantum simulator, showing the electronic population difference between the donor state and acceptor state, $\sigma_z(t) = \sigma_{DD}(t) - \sigma_{AA}(t)$, as a function of time for (a) model 1, (b) model 2, (c) model 3, and (d) model 4 as given in Table 1, with units scaled to the electronic coupling, Γ. Each panel shows the comparison between the GQME-based exact results (black curves) and the QASM-based results (yellow dots). The time step for both the exact and simulated results is $\Delta t = 1.50083 \times 10^{-3}$ for models 1–3 and $\Delta t = 4.50249 \times 10^{-3}$ for model 4. Each model is simulated for 4000 time steps. The number of projection measurements applied by the QASM simulator to obtain a single time step is 2000 shots.
The initial state is assumed to be of the form of eq 2, with the initial electronic (system) reduced density operator given by
\[\hat{\rho}(0) = |1\rangle\langle 1| \] (17) and the initial nuclear (bath) reduced density operator given by
\[\hat{\rho}_n(0) = \frac{e^{-\delta(\hat{R}_0+\hat{R}_3)/2}}{\text{Tr}_e\{e^{-\delta(\hat{R}_0+\hat{R}_3)/2}\}} \] (18)

Calculations were carried out for four different sets of parameter values (see Table 1). Models 1 and 2 correspond to systems with an energy bias between the donor and acceptor states (\(e \neq 0 \)) and differ in their cutoff frequencies, with model 2 having a higher cutoff frequency. Model 3 corresponds to a biased system with the same parameters as model 2 except for a larger Kondo parameter. Model 4 corresponds to a symmetric system with zero energy bias between the donor and acceptor states (\(e = 0 \)). The results reported in this paper were obtained with a time step of \(\Delta t = 1.50083 \times 10^{-3} \Gamma^{-1} \) for models 1–3 and a time step of \(\Delta t = 4.50249 \times 10^{-3} \Gamma^{-1} \) for model 4.

Starting with the quantum-mechanically exact memory kernels (adopted from ref 78), the time evolution superoperator for the electronic reduced density matrix \(\mathbf{G}(t) \) was generated for the four models given in Table 1 by solving the corresponding GQME (eq 10).

The GQME-based quantum algorithm for simulating the electronic dynamics within the spin-boson model was implemented on the IBM quantum platforms via the Qiskit package. The quantum implementation involved the transformation of \(\mathbf{G}(t) \) into \(\mathbf{U}_g(t) \) at each time step, followed by the construction of a quantum circuit based on \(\mathbf{U}_g(t) \) and the use of the quantum circuit to simulate the time evolution of the reduced electronic density matrix. To build the circuit, we dilated the 4 × 4 \(\mathbf{G}(t) \) into a unitary 8 × 8 \(\mathbf{U}_g(t) \) by using a 1-dilation procedure (see eq 11). The unitary \(\mathbf{U}_g(t) \) was then transpiled into a 3-qubit quantum circuit composed of three elementary quantum gates: \(R_y, \sqrt{X} \), and \(CX \). Examples of \(\mathbf{U}_g(t) \) and details of the elementary quantum gates and circuits are given in the Supporting Information (SI). The initial electronic state is set to \((1, 0, 0, 0, 0, 0, 0, 0) \), where the last four zeroes are the extra dimensions from the dilation procedure. The QASM simulator and the real quantum devices initialize the input state \((1, 0, 0, 0, 0, 0, 0, 0)^T \), and apply the unitary operation \(\mathbf{U}_g(t) \) to the input state followed by projection measurements to retrieve the probability distribution of all eight basis states. Each circuit runs 2000 shots, and the resulting probabilities \(P_{000}(t) \) of measuring the state \(|0000\rangle \) and \(P_{011}(t) \) of measuring \(|0111\rangle \) correspond to the diagonal elements of the modified density matrix, \(\sigma_{00}'(t) \) and \(\sigma_{11}'(t) \).

The populations of the donor state, \(\sigma_{00}(t) \), and acceptor state, \(\sigma_{11}(t) \), are retrieved as follows:
\[\sigma_{00}(t) = \sqrt{P_{000}(t)} \times n_c \quad \text{and} \quad \sigma_{11}(t) = \sqrt{P_{011}(t)} \times n_c \] (19)

In what follows, we report results in terms of the difference between the donor and acceptor populations, \(\sigma_{11}(t) - \sigma_{00}(t) \).
The comparison between the exact results obtained by solving the GQME on a classical computer and results obtained by performing the quantum algorithm on the QASM simulator is shown in Figure 3. The QASM simulator results are in excellent agreement with the exact results for all four models under consideration. The small-amplitude oscillations of the QASM-based results around the exact results can be traced back to the inherent uncertainty associated with projection measurements. These results validate the GQME-based quantum algorithm and demonstrate its ability to reproduce results obtained via the GQME-based classical algorithm.

To test the performance of the quantum algorithm on real quantum devices, we also performed the simulations on the quantum computers provided by IBM Quantum (IBM Q). The simulations were performed for models 1 to 4 on ibmq quito, ibmq belem, and ibmq lima. All devices are equipped with five qubits that have the same qubit connectivity and use IBM’s Falcon r4T processor with the same architecture. In each simulation of a given model, three qubits were used, and 10 repeated experiments were performed. In a single experiment, 40 time steps are chosen at an equal spacing out of the 4000 time steps used in the QASM simulations, i.e., the time step in each experiment is 100 times greater than the time step used in the QASM simulations as listed in Table 1. The average CX gate error and readout error are \((1.191 \times 10^{-2}, 5.194 \times 10^{-2})\) for ibmq quito, \((1.160 \times 10^{-2}, 2.590 \times 10^{-2})\) for ibmq belem, and \((1.032 \times 10^{-2}, 2.834 \times 10^{-2})\) for ibmq lima as of the time of the experiments. The quantum circuits are the same in both the QASM simulations and the real machine simulations. The transpiled quantum gate counts for each of the \(\mathcal{U}_\sigma(t)\) superoperators are 153 \(R_y\) gates, 98 \(\sqrt{X}\) gates, and 41 CX gates. The transpiling process is done internally by the Qiskit package, and examples of the quantum circuits can be found in the SI.

The comparison between the GQME-generated exact results and real machine simulations is given in Figure 4. In the figure, the red dots are the averages of the 10 experiments, and the error bars represent the standard derivations of the 10 experiments. While the results obtained on the IBM Q quantum computers reproduce some of the trends exhibited by the exact results, the agreement is qualitative at best. The lack of quantitative agreement can be traced back to the rather extensive circuit depth, which makes the calculation susceptible to noise. In the next section, we propose a way to lower the circuit depth and enhance the accuracy of the calculation on the IBM Q quantum computers by using reduced-dimensionality GQMEs.

3.2. Reduced-Dimensionality GQME-Based Propagators

Since the quantum algorithm on the QASM simulator was able to accurately reproduce the exact results, as shown in Figure 3, we attribute the lack of quantitative agreement between the exact results and the results obtained via the IBM Q quantum computers, as seen in Figure 4, to noise within the real quantum devices. If so, reducing the circuit depth would improve the accuracy. In this subsection, we validate this hypothesis by reducing the dimensionality of the non-unitary propagator \(\mathcal{G}(t)\), thereby lowering the circuit depth to levels that allow for an accurate calculation on the NISQ quantum computers.

To this end, we take inspiration from reduced-dimensionality GQMEs, which correspond to EoMs for subsets of the open quantum system’s reduced density matrix elements rather than

![Figure 3](https://doi.org/10.1021/acs.jctc.3c00316)
the full reduced density matrix. For example, for the spin-boson model described in section 3.1, the memory kernel in the GQME for the full reduced density matrix, $\tilde{\sigma}(t)$, is a 4×4 matrix, while the memory kernel in the GQME for only the two populations (the diagonal elements of the reduced density matrix, $\sigma_{00}(t)$ and $\sigma_{11}(t)$) is a 2×2 matrix. Below we demonstrate how one can take advantage of this reduced dimensionality to lower the circuit depth and thereby improve the accuracy of the simulation on quantum machines.

For the spin-boson model under consideration in this paper, the electronic populations can be propagated using only the four corner elements of $G(t)$, i.e.,

$$
\begin{pmatrix}
\sigma_{1}(t) \\
\sigma_{2}(t)
\end{pmatrix} =
\begin{pmatrix}
G_{11,11}(t) & G_{11,22}(t) \\
G_{22,11}(t) & G_{22,22}(t)
\end{pmatrix}
\begin{pmatrix}
\sigma_{1}(0) \\
\sigma_{2}(0)
\end{pmatrix}
$$

(20)

It should be noted that this equality only holds when the initial electronic state is of the form $\tilde{\sigma}(0) = \sum_{j=1}^{N} |j\rangle\langle j|$, which is consistent with the initial state under consideration in this paper (see eq 17). It should also be noted that eq 20 is still exact, in the sense that the time evolution of $\sigma_{1}(t)$ and $\sigma_{0}(t)$ as described by the equation is exactly the same time evolution as described by eq 9. Thus, the only price one pays for the reduced dimensionality is the loss of the ability to simulate the dynamics of the off-diagonal matrix elements $\sigma_{01}(t)$ and $\sigma_{02}(t)$. However, given that the primary goal is often to simulate the dynamics of electronic energy/charge transfer, the populations of the corresponding electronic states is all that one needs. Finally, it is worth noting that our specific way of choosing the subset of the density operator does not indicate that there is no coupling between the elements. In fact, such coupling can be captured exactly by the memory kernel and the effective Liouvillian of any open quantum system with the GQME.

The 2×2 propagator in eq 20, which we will refer to as $G^{pop}(t)$, can be dilated following a procedure similar to that used to dilate the 4×4 propagator for the full density matrix, $G(t)$. More specifically, $G^{pop}(t)$ can be divided by a normalization factor $n^{pop} = \|G^{pop}(t)\|_1$ to obtain its contraction form $G^{pop}(t) = G^{pop}(t)/n^{pop}$. Applying a 1-dilation procedure to $G^{pop}(t)$, similar to that in eq 11, then leads to the following unitary propagator:

$$
U_{G^{pop}}(t) =
\begin{pmatrix}
G^{pop}(t) & D^{pop}(t) \\
-D^{pop}(t) & -G^{pop}(t)
\end{pmatrix}
$$

(21)

Notably, for the spin-boson model, $U_{G^{pop}}(t)$ is an 8×8 time-dependent matrix, $U_{G^{pop}}(t)$ is a 4×4 time-dependent matrix.

A comparison between the exact results and results obtained by performing the quantum algorithm based on eq 21 on IBM Q quantum machines is shown in Figure 5. The results shown were obtained for models 1–4 on ibmq_belem, ibmq_lima, ibm_oslo, and ibm_nairobi, respectively. Here, ibm_oslo and ibm_nairobi are each equipped with seven qubits of the same qubit connectivity, and both use IBM’s Falcon r5.11H processor. The average CX gate error and readout error are $(1.038 \times 10^{-3}, 2.280 \times 10^{-3})$ for ibm_nairobi and $(8.537 \times 10^{-3}, 2.310 \times 10^{-3})$ for ibm_oslo as of the time of the experiments. The new simulations use the same time steps and experiment shots and follow the same procedures as used to obtain the results in

Figure 4. The quantum circuits are retranspiled to implement the reduced-dimensionality GQME-based quantum algorithm where only two qubits are used. The transpiled quantum gate counts for each of the $U_{G^{pop}}(t)$ superoperators are 17 R_z gates, $12\sqrt{X}$ gates, and 2 CX gates. The transpiling processes are done internally by the Qiskit package.

The results in Figure 5 confirm that the lack of quantitative agreement seen in Figure 4 can be attributed to noise on the real quantum devices. More specifically, significantly more accurate results are obtained when the populations-only reduced-dimensionality GQME-based propagators are used, which can be traced back to their ability to give rise to shallower quantum circuits. Thus, reduced dimensionality makes it possible to accurately simulate the open quantum system dynamics on NISQ quantum computers.

4. CONCLUDING REMARKS

The GQME-based quantum algorithm proposed herein substantially expands the range of open quantum systems that can be simulated on a quantum computer. In this paper, we have demonstrated the applicability and versatility of the algorithm by using it to simulate the dynamics of electronic populations within the benchmark spin-boson model on the IBM QASM quantum simulator and IBM quantum computers.

The results obtained via the noise-free QASM simulator were found to be highly accurate, with the only errors inherently associated with the quantum projection measurements and giving rise to very slight deviations from the exact results. However, while the implementation of the algorithm on the NISQ IBM Q quantum computers was found to reproduce some of the trends exhibited by the exact results, the agreement was qualitative at best. This lack of quantitative agreement was traced back to the rather extensive circuit depth, which made the calculation susceptible to noise. This issue was confirmed and fixed by implementing a populations-only reduced-dimensionality version of the quantum algorithm, which significantly shortened the circuit depth and as a result gave rise to quantitatively accurate results.

We acknowledge the fact that demonstrating quantum advantage is currently challenging for the proposed quantum algorithm used to simulate open quantum dynamics. However, quantum dynamics simulations often become computationally intractable on a classical computer even when the propagator is known (or numerically determined). This is simply because the time-evolving state becomes highly entangled and requires an exponentially large memory space, where N is the number of possible states in Hilbert space (and an exponentially large computational effort). In contrast, a quantum computer can efficiently represent the time-evolving state with only 2^N qubits. In addition, further improvement to our quantum simulations can be achieved by reducing the circuit depth via optimizing the quantum circuit design. This can be achieved by optimizing the decomposition of unitary operations into elementary gate sequences. One particularly interesting idea is to reduce the circuit depth by adding qubits. To this end, it should be noted that we have only used three qubits out of the five currently available on the IBM quantum computers. Another way to improve accuracy is by active error correction using dynamical decoupling (DD) protocols, which employ pulses to suppress the system’s coupling with the environment. Recent implementations of DD on IBM machines was found to improve the fidelity of the overall perform-
Yudan Liu — Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States

Saurabh Shrivpuje — Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States

Yingzi Gu — Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States

Corresponding Authors

Micheline B. Soley — Department of Chemistry and Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States; Department of Chemistry and Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jctc.3c00316

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the financial support of the National Science Foundation under Award 2124511, CCI Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices (CQDMQD). We acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum team.

REFERENCES

(19) Baiz, C.; Kubarych, K.; Geva, E. Molecular theory and simulation of coherence transfer in metal carbenoids and its signature on
(24) Jang, S. J. Dynamics of Molecular Excitons; Elsevier: Amsterdam, 2021.

