Crystallographic Data Support the Carousel Mechanism of Water Supply to the Oxygen-Evolving Complex of Photosystem II

Jimin Wang,* Mikhail Askerka,* Gary W. Brudvig,* and Victor S. Batista*†,‡

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States

Supporting Information

ABSTRACT: Photosystem II (PSII) oxidizes water to produce oxygen through a four-step photocatalytic cycle. Understanding PSII structure–function relations is important for the development of biomimetic photocatalytic systems. The quantum mechanics/molecular mechanics (QM/MM) analysis of substrate water binding to the oxygen-evolving complex (OEC) has suggested a rearrangement of water ligands in a carousel mechanism around a key Mn center. Here, we find that the most recently reported X-ray free-electron laser (XFEL) crystallographic data obtained for the dark-stable S1 state and the doubly flashed S3 state at 2.25 Å resolution support the carousel mechanism. The features in the XFEL data and QM/MM model-simulated difference Fourier maps suggest that water displacement may occur from the so-called “narrow” channel, resulting in binding of a new water molecule to the OEC, and thus provide new insights into the nature of rearrangements of water ligands along the catalytic cycle before O=O bond formation.

Photonsystem II (PSII) is a large multisubunit membrane protein complex, responsible for direct solar water oxidation in higher plants, algae, and cyanobacteria.1–3 Water is oxidized at the oxygen-evolving complex (OEC) embedded in the D1 protein subunit, an oxomanganese cluster that operates by cycling through five redox states, the so-called “storage states” (or “S states”) of oxidizing equivalents (S0−S5).4 During each turn of the catalytic cycle, the OEC binds two water molecules and gets oxidized four times, generating the S5 state that catalyzes O=O bond formation for O2 evolution. While S0 is the most reduced state, S1 is the stable dark-adapted state, consistent with known X-ray crystallography models of PSII,31 in an effective approach for suppressing radiation damage by continuous translation of unexposed parts of large single crystals of PSII,3,31 in an effort to achieve “diffraction-before-destruction”. However, several technical aspects remain challenging.33,34 The most effective approach for suppressing radiation damage has been the “one-shot-per-crystal” method, as in recent XFEL studies of the S1 state corresponding to the model reported for SWSS (of PDB accession number)13 and earlier studies of the S1 and S3 states.33–35 In one XFEL study,35 an insufficient degree of isomorphism between the S1 and S3 ashes of light, leading to O2 evolution and regeneration of the OEC in the S0 state.3,35 Structural models based on quantum mechanics/molecular mechanics (QM/MM) have been proposed for the S0=S1 states, consistent with known biochemical, spectroscopic, and crystallography data (Figure 1, Supporting Information (SI)).6–11

The QM/MM models suggest water binding to the cluster in the S2 → S1 transition by a carousel rearrangement of water ligands around Mn4 (Scheme 1).12 Here, we find that experimental data support such a carousel mechanism from the most recently reported X-ray free-electron laser (XFEL) crystallographic experiments,13 as the focus of this study. As discussed previously,12 the narrow water channel has been considered by several groups as a water delivery pathway based on a variety of studies.14–20 Alternative mechanisms,21,22 including the pivot mechanism,23 have also been proposed and claimed to be consistent with the XFEL data for the S3 state.13 Reference 21 disfavored the carousel mechanism on the basis of high-energy barriers for TS6 and TS7, although the pathway of the carousel corresponds to their TS4, which has a very low barrier. At the same time, we question whether the S3 XFEL data have actually resolved the ambiguity of the water oxidation mechanism.

A number of X-ray crystallography models of PSII have been reported in recent years, including PSII models with the OEC in the S1 state based on conventional synchrotron data.24,25 However, data collection from conventional synchrotron sources has been shown to induce radiation damage of the OEC and formation of noncatalytically relevant reduced states.24,26,27 X-ray radiation is thought to reduce the OEC and induce oxygen additions to protein side chains through mechanisms of hydroxyl free radicals.27–30 Thus, significant efforts are currently focused on XFEL crystallography.15–32

High-resolution XFEL diffraction data have been collected using continuous translation of unexposed parts of large single crystals of PSII,3,31 in an effort to achieve “diffraction-before-destruction”. However, several technical aspects remain challenging.33,34 The most effective approach for suppressing radiation damage has been the “one-shot-per-crystal” method, as in recent XFEL studies of the S1 state corresponding to the model reported for SWSS (of PDB accession number)13 and earlier studies of the S1 and S3 states.33–35 In one XFEL study,35 an insufficient degree of isomorphism between the S1 and S3...
states required computational realignment of the resulting electron density maps before difference electron density maps could be calculated and studied.9 In other XFEL studies,36−39 computational errors introduced by data reduction based on the software cctbx.xfel were so large that structural changes due to S3 state formation were buried below the noise level.40 Nonetheless, structural information associated with the S1 to S2 transition from noisy XFEL data could still be revealed for rearrangements that involved displacement of an Mn center, found to be consistent with the simulated Fourier difference maps predicted by QM/MM models.8,36−39

The recent XFEL study by Shen and co-workers reported high-quality data.13 The data sets exhibit the highest possible isomorphism between the S1 and S3 states, with the overall amplitude and intensity isomorphous difference reported of only 6.8 and 5.6% at 2.35 Å resolution, respectively (see below for further discussion), ideally suitable for the observed isomorphous difference Fourier studies, that is, for calculation of the very sensitive $F_{\text{obs}}(5\text{WS6}/S3) - F_{\text{obs}}(5\text{WS5}/S1)$ map or the $F_{\text{obs}} - F_{\text{calc}}$ map (Figure 2A,B and SI).41−43

In particular, the dark-adapted S1 structure13 (PDB access code 5WS5) is found to be most consistent with EXAFS data (SI, Figure S1) and the previously proposed EXAFS-based S1 QM/MM model.45 In contrast, the S3 structure (PDB access code 5WS6) is not fully consistent with S3 EXAFS data9,46 (SI, Figures S1−S3), likely due to the unavoidable mixture of S states present in the XFEL microcrystals, with only a small fraction in the S3 state. In fact, the apparently short O5−O6 distance suggested for the S3 state can be accounted for in terms of partial occupation of O5 and O6 as determined by the composition of the mixture of S1 and S3 states. Here, we provide a structural interpretation of the reported difference Fourier features13 based on QM/MM models.6−9

The OEC has four Mn ions and a Ca forming the oxomanganese cluster Mn4CaO5. The QM/MM S3 model has an additional core O atom, arising from water binding during the S2 to S3 transition.9 On the basis of data from the ammonia-
bound S₂ QM/MM model, formation of the S₃ state was proposed to occur through a carousel rearrangement (Scheme 1) involving water molecules W₁, W₂, and W₃, which correspond to water molecules #578, #523, and #527 in monomer A, respectively (the original numbering reported in 5WS5 is provided in the SI, with uppercase one-letter labeling of amino acid residues for monomer A and with lowercase for monomer B). As shown in Scheme 1, oxidation of the OEC triggers binding of a water molecule (W₃) to Mn⁴ from the so-called “narrow” channel (W₃ is #527 in monomer A or Wₓ in our original nomenclature; see the SI). W₃ binding displaces W₂ into the W₁ position, and W₁ is displaced into the O₅ position. The O₅ ligand is displaced toward a new position, becoming O₆, using the nomenclature from Shen and co-workers. The role of the narrow channel as a water delivery channel during the S₂ → S₃ transition has also been supported by Capone et al. and Retegan et al. The rearrangement associated with the carousel mechanism slightly displaces Ca toward O₆ while Mn⁴ is slightly displaced away from Mn₁, making room for the new O₅ ligand. During the rearrangement, four out of six bidentate carboxylate ligands remain largely stationary (Figures 2 and S4–S7). However, E₁₈₉ bound to Ca and Mn₁ and D₁₇₀ bound to Ca and Mn₄ undergo torsion angle displacements to accommodate the new water molecule as O₅ (Figures 2 and S4).

Figure 2C,D shows that the simulated S₁-minus-S₁ electron density difference based on QM/MM models exhibits a positive feature (in green), extending from Ca to the new position of O₅ as a ligand of Mn₁ (O₆ according to numbering by Shen), and a small displacement of Ca toward that new ligand. In addition, there are positive and negative features (in green and red, respectively) flanking the Mn⁴ center. No significant density difference features are observed at the W₁ and W₂ positions because there is no net change of electronic density produced by water ligand exchange. Furthermore, there is no significant negative peak behind Ca because there is concerted movement of a water molecule filling the depleted density upon Ca displacement.

The features revealed by the simulated electron density differences of QM/MM models are consistent with features in the observed isomorphous difference Fourier maps of XFEL data for F_{obs}(5WS6/S₃) and F_{obs}(5WS5/S₁), originally reported by Shen and colleagues and faithfully reproduced here (Figures 2A,B, S5, and S6). Analogous to the QM/MM models, the XFEL difference Fourier map shows a small negative peak on W₃ (#527) and a large negative peak next to W₄ (#630). These features suggest that W₄ moves into the W₃ position when W₃ becomes a ligand of Mn⁴. However, other water molecules in the narrow channel do not refill the W₄ position immediately. Remarkably, these features are observed for both monomers A and B.

By using the same method, we have assessed the correctness of the QM/MM models as just described; we have also assessed whether the atomistic models of the S₁ and S₃ states proposed by Shen and co-workers were consistent with the outstanding features in the observed difference Fourier map that Shen and colleagues obtained and that we faithfully produced here, that is, whether their F_{calc}(5WS6/S₃) − F_{calc}(5WS5/S₁) difference Fourier maps have reproduced the F_{obs}(5WS6/S₃) − F_{obs}(5WS5/S₁) maps. The observed features in the S₃-minus-
S₃ maps as discussed above are very robust because they are contributed by the observed amplitude differences from all of the reflections so that they are not much dependent on data of the selected resolution range used nor on any given set of model-calculated phases. That is, the observed differences Fourier features remain largely the same whether the model phases, which represent one of many calculated differences, are used or not.

Figure 3A shows that the calculated difference Fourier map using F_{calc}(5WS6/S3) model phases, which represents one of many calculated difference Fourier maps that we have carefully examined, do not reproduce the observed map, suggesting that at least one of the two atomistic models (i.e., the S₃ model) does not correspond to the observed data. We have also examined the calculated difference Fourier maps using F_{calc}(5WS6/S3) model phases with a different resolution range of data, for example, by excluding some very low resolution data. An exclusion of very low resolution data is relevant here because differences from all of the reflections so that they are not much dependent on data of the selected resolution range used nor on any given set of model-calculated phases. That is, the observed differences Fourier features remain largely the same whether the model phases, which represent one of many calculated differences, are used or not.

Because the 5WS6/S₃ model is consistent with the S₃ QM/MM model, it is likely that the quality of the XFEL-derived 5WS6/S₃ model is questionable. This can be confirmed by using the difference Fourier map F_{calc}(S_3) − F_{obs}(S_3) between the calculated structure factors (F_{calc}) of the 5WS6/S₃ model and the observed 5WS6/S₃ (F_{obs}) data (Figure 3B). The F_{calc}(5WS6/S₃) − F_{obs}(5WS6/S₃) difference shown in Figure 3B shows a single peak at the W₄ position, consistent with displacement of that water molecule during the S₁/S₃ transition. However, none of the other observed features shown in Figure 2 are accounted for in Figure 3. Reciprocally, the hybrid F_{calc}(5WS6/S₃) − F_{calc}(5WS5/S₁) map was also calculated, and it is found that the features in this map largely reproduced the features in the observed difference Fourier maps (data not shown). This is another way to validate that the S₃ atomic model obtained by Shen and colleagues is indeed of reasonably good quality.

We further note that the σ_A-weighted $2F_{\text{obs}}$ − F_{calc} map based on the 5WS6/S₃ model does not show any electron density attributable to O₆ at any contour level (Figure 3C,D). For example, several water ligands to Ca and some Mn centers are clearly visible in this map at the 1.0σ contour level, whereas O₆ is not visible at 0.5σ (Figure 3C,D) or even at 0.01σ (data not shown). This observation suggests that the fraction of PSII cores converted to the S₃ state and recorded in the XFEL data is very low. Moreover, it is plausible that some of the observed density at the O₅ position (Figure 2) in the F_{obs}(5WS6/S₃) − F_{obs}(5WS5/S₁) map may not come from the S₃ state but rather from other lower states. We thus conclude that the S₃ model might not actually have O₅ and O₆ at 1.5 Å from each other. In any case, there is no conclusive evidence for an O–O bond formed in the S₃ state. The reason why one can see very small subtle structural changes in the F_{obs}(S₃) − F_{obs}(S₁) difference Fourier map but not in the F_{calc}(S₃) − F_{calc}(S₁) difference Fourier maps [or in the $2F_{\text{obs}}$(S₃) − F_{calc}(S₃) maps] is that the observed amplitude difference between the two states is only 6.8%, whereas the unbiased amplitude difference between the
calculated and observed amplitudes within the \(S_3 \) state (i.e., free \(R \) factor value) is 17.6% (see below for further discussion).\(^{13}\)

W4 likely moves to the W3 site due to the immediate proximity when W3 takes the position of W2 (Figure 4A,B). As shown by the \(S_3 \) QM/MM model, the relative occupancy of each site is mostly determined by hydrogen-bonding interactions (Figures 4 and S8). W3 makes hydrogen bonds to \(O_\gamma \) of S169 and O4, while W2 makes bonds with D61 (Figure 4C,D). W4 makes a hydrogen bond with W5 and E354. All of these interactions are consistent with a preference of W4 to occupy the W3 site in the \(S_3 \) state. W5 might not immediately move into the vacant position of W4 because W4 has three hydrogen bonds, including the carbonyl \(O \) of D61, the side chain of N87, and a water molecule (Figure S8). Thus, we conjecture that an additional conformational change is necessary for W5 to take the position of W4. The energetics of potential movement of water molecules along this channel has been discussed,\(^{19,20}\) although it has also been disfavored due to the limited water mobility.\(^7\)

The density feature associated with W3, next to O4, disappears during the \(S_1 \) to \(S_3 \) transition (Figure 2A,B). Therefore, it seems unlikely that another water molecule would move next to O4 and become a substrate. Given the geometry constraints at that site, even molecular oxygen might not fit at the O4 position. Moreover, formation of an \(O-O \) bond at this position would be thermodynamically demanding because it requires breaking two coordination interactions of the \(\mu-O4 \) bridge with rather unfavorable structural changes. Thus, we disfavor O4 as the site for \(O-O \) bond formation as suggested as a secondary possibility of the two possible models put forward by Shen and co-workers (two dashed circles in their Figure 4).\(^{13}\) Instead, we favor the second water molecule to be located at the front end of the carousel cascade near the O5 and O6 positions, which corresponds to the first choice of Shen and colleagues but in different details,\(^{13}\) interacting with Ca as suggested by oxygen isotope exchange measurements.\(^{48}\)

In the \(S_0, S_1, \) and \(S_2 \) states, one water molecule is rapidly exchangeable, exhibiting the fastest rates within detectable experimental range, while another one is rather slow.\(^{48}\) The fast water molecule is likely to be very weakly associated with the OEC, such as W1 on Mn4, while the slow one might be part of the OEC, tentatively assigned as the O5 species. In the \(S_0 \) state, O5 is a hydroxo, which should have a relatively higher exchangeable rate than those in the \(S_1 \) and \(S_2 \) states where O5 is an oxo species. However, considering that EPR signals show the presence of two \(S_2 \) state structures consistent with different O5 positions (i.e., as a ligand of either Mn1 or Mn4), it is reasonable to expect a higher exchangeable rate for O5 in \(S_2 \) when compared to the \(S_1 \) state.\(^{48}\) In the \(S_3 \) state, W1 moves to the O5 position, consistent with the fast exchangeable water becoming very slow. At the same time, the original O5 species becomes O6, expected to have a slightly increased exchangeable rate.\(^{48}\) These findings are particularly relevant to analysis of the reaction mechanism as directly compared to experimental data.

A lesson that we want to emphasize from this study is that, whereas technologies in X-ray crystallography have indeed been...
advanced in the last few decades, the crystallographic foundation on how to assess whether the measured data contain useful structural information (i.e., above the noise level) remains unchanged, and the isomorphous difference Fourier method remains as a sensitive method to reveal subtle structural changes recorded in the measured differences in the diffraction data. By all means, Shen and colleagues have done a superb job at data processing and have provided high-quality XFEL data sets for PSII intermediates with cumulative Pearson split correlation coefficients ($CC_{1/2}$) of 99.4–99.7% and split intensity R factors of 5.4–6.2% for each data set that is comparable to the quality of conventional synchrotron data. This permits Shen and colleagues to obtain useful structural information on the S_1 to S_3 state transition, which is reflected in the observed intensity difference of only 5.6% between the two data sets. Although the expected structural transition signals are indeed very weak, they are consistently present in each of 35,393 reflections at 2.35 Å resolution, making them collectively powerful and useful. For comparison, in another XFEL study on ammonia binding to PSII, the authors reported cumulative $CC_{1/2}$ values of 53.2% for the S_1 data set at 3.0 Å resolution and 54.2% for the two-flash NH$_3$ bound state at 2.8 Å resolution (the authors did not report intensity split R factors). It is clear that these authors would have to put extra effort into their data processing procedures to improve the internal consistency indexes within each data set before they could conclude with certainty whether the diffraction data recorded any reliable structural information on ammonia binding to the OEC.

Chen and colleagues have done a superb job at XFEL data processing; nevertheless, we do not find complete support of their interpretation, which was likely biased toward the "200 + 1 atom" open S_1 model generated by Li and Siegbahn (Figure S9A), with a hallmark intermediate O5–H–O6 configuration where O6 is a newly added water substrate (1+1). In their energy-minimized model, Li and Siegbahn relaxed all of the truncated protein side chains (and therefore all water molecules nearby) that freely reposition. The relaxation resulted in displacement of the H332 side chain by about 2.30 Å, relative to the experimental coordinates of the SWSS mode from our S_3 model, as well as a large displacement of the C1$^−$ ion by 0.73 Å (Figure S9) and water molecules. Unfortunately, these displacements are not consistent with the experimental features observed in the difference Fourier maps obtained by Chen and colleagues. While large movements of protein side chains during the S_1 to S_3 state transition have been suggested based on low-resolution XFEL data, that interpretation did not take into account possible effects of Fourier series termination. Furthermore, large displacements are not consistent with the much higher resolution, better-quality, new XFEL data obtained by Shen and co-workers. Moreover, even though the Li and Siegbahn model may have accounted for the selected Mn–Mn distances derived from the EXAFS data, their model has not been shown to reproduce the EXAFS spectra just like many other alternative models (Figures S1–S3). Therefore, our model and the carousel mechanism seem to remain most consistent with XFEL data and the EXAFS spectra, as compared to other suggested models.

COMPUTATIONAL METHODS

Crystallographic analysis was carried out using the program CCP4 suite and displayed using the graphics Coot. When the OEC and its protein ligands from the QM/MM model were reinserted into an experimental atomic model, the uniform atomic B factor was kept the same for the mean B factor for the replaced part of the model. The QM level of our original S_3 QM/MM model did not include W3 and W4. Therefore, reoptimization of the S_3 QM/MM with W4 displaced to the W3 position led to a model that is even in better agreement with the published EXAFS data for the S_3 state (Figures S2 and S3). The calculated structure factors were obtained from atomic models using Refmac5 by setting the zero cycle rigid-body refinement option. The correctness of the structure factor calculation has been verified by visual inspection of both $2F_{obs} − F_{calc}$ and $F_{obs} − F_{calc}$ maps and by comparison with the reported statistical values such as amplitude differences. For comparisons with experiments, we note that the features of the difference Fourier maps do not provide how much S_3 was formed by the two flashes. Difference features of the same kind would be observed regardless of whether the transition is 100% complete or, for example, only 20% because the unchanged portion between the two structures cancels out in both cases. The only difference between 100 or 20% completion would be that the peak heights in the latter would be reduced 5-fold relative to the former.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.7b00750.

Description of QM/MM models, description of EXAFS analysis, electron density map analysis, additional references, and updated S_3 state coordinates (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: victor.batista@yale.edu.

ORCID ©
Gary W. Brudvig: 0000-0002-7040-1892
Victor S. Batista: 0000-0002-3262-1237

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences, Photosynthetic Systems. Experimental work was funded by Grant DE-FG02-05ER15646 (G.W.B.), computational work was funded by Grant DESC0001423 (V.S.B), and crystallographic study was supported by National Institutes of Health Grant P01 GM022778 (J.W.).

REFERENCES

(26) Vogt, L.; Ertem, M. Z.; Pal, R.; Brudvig, G. W.; Batista, V. S. Computational insights on crystal structure of the oxygen-evolving complex of photosystem II with either Ca(2+) or Ca(2+) substituted by Sr(2+). Biochemistry 2015, 54 (3), 820–5.

