Surface-Induced Anisotropic Binding of a Rhenium CO$_2$-Reduction Catalyst on Rutile TiO$_2$(110) Surfaces

Aimin Ge,1§ Benjamin Rudshueyn,1,8∥ Brian T. Psciuk,§ Dequan Xiao,7,8⊥ Jia Song,$^+$
Chantelle L. Anfuso,$^+,#$ Allen M. Ricks,$^+$ Victor S. Batista,$^+,8$ and Tianquan Lian$^+,8$

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
∥Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
§Yale Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States

ABSTRACT: Vibrational sum frequency generation (SFG) spectroscopy has been utilized to study the spatial orientation and alignment of Re(CO)$_3$Cl(dcbpy) ($dcbpy = 4,4'$-dicarboxy-2,2'$'$-bipyridine) (or ReCOA) on the (001) and (110) surfaces of rutile single-crystalline TiO$_2$. The SFG intensity of the CO stretching modes shows an isotropic distribution on the (001) surface and an anisotropic distribution on the (110) surfaces with respect to the in-plane rotation of the crystal relative to the surface normal (or the incident laser beam plane). By combining these results with ab initio SFG simulations and with modeling of ReCOA–TiO$_2$ cluster binding structures at the density functional theory level, we reveal that the origin of the optical anisotropy for ReCOA on the TiO$_2$(110) surface is associated with the binding preference of ReCOA along the [-110] axis. Along this direction, the binding structure is energetically favorable because of the formation of proper hydrogen bonding between the carboxylate group and passivating water molecules adsorbed on the TiO$_2$(110) surface. Simulations of dimers of ReCOA molecules binding close together with full nearest-neighbor effects give a structure that reproduces the experimental SFG polar plot. The tilt angle, defined by the bpy ring angle relative to the surface normal, of the catalyst is found to be 26° for one monomer and 18° for the other, which corresponds to an aggregate at high surface coverage.

1. INTRODUCTION

The performance of photocatalytic and electrocatalytic systems is often highly dependent on the microscopic ordering of catalytic molecules on a scaffolding support system.1–4 The molecule–semiconductor electrode interface is of particular interest because of its relevance in many types of catalytic systems.5–11 Because molecular orientation in these systems can significantly influence their catalytic performance, the ability to control the molecular ordering through careful selection of the surface structure and symmetry would be extremely beneficial.8 An investigation of catalytic molecules on surfaces with different symmetries may elucidate how the degree of molecular ordering depends on surface structure and therefore is of great practical interest.1–4

Vibrational sum frequency generation (SFG) spectroscopy has been recognized in recent years as a useful technique for determining average molecular conformation at interfaces.12–14 As a second-order optical technique, it is forbidden in media with inversion symmetry but allowed at interfaces where inversion symmetry is necessarily broken.15 SFG is thus surface-specific, giving it a distinct advantage over other optical techniques and making it an ideal tool for elucidating a molecular-level picture of structure and dynamics for molecule–semiconductor as well as molecule–metal systems.16–19 Although it is typically used to determine the average molecular tilt angle for molecules on isotropic surfaces, it can also be used to determine the degree of anisotropy in these interfacial systems. Specifically, by monitoring the molecular sum frequency response as a function of the surface azimuthal angle, the anisotropic orientation distribution can be deduced.20–28

Re(CO)$_3$Cl(dcbpy) ($dcbpy = 4,4'$-dicarboxy-2,2'$'$'-bipyridine) (or ReCOA) and several derivatives have been explored in recent years for catalytic reduction of CO$_2$ to CO.9–27–34 Binding of a rhenium bipyridyl complex to TiO$_2$ electrodes has also been shown to increase catalytic reductive ability.9 Characterizing the ReCOA/TiO$_2$ interface is thus important to fully understand this important catalytic system. Previously, we investigated the orientation of ReCOA on the single-crystalline TiO$_2$(001) surface using a combination of vibrational SFG spectroscopy65

Special Issue: Richard P. Van Duyne Festschrift

Received: March 28, 2016
Revised: May 31, 2016

DOI: 10.1021/acs.jpcc.6b03165
2. EXPERIMENTAL AND COMPUTATIONAL METHODS

2.1. Sample Preparation

Rutile (001) and (110) crystals were purchased from Commercial Crystal Laboratories, Inc. The crystals were cleaned and sensitized according to published procedures.\(^{35,36}\) Briefly, the crystals were first sonicated in piranha solution (3:1 H\(_2\)SO\(_4\)/H\(_2\)O\(_2\)) for 1 h, followed by a Milli-Q (18 MΩ cm) water rinse. They were placed in 1 M NaOH solution for 5 min, followed by another Milli-Q rinse. The crystals were then exposed to ultraviolet (UV) radiation for 10 min in 1 M HCl bath. After the UV treatment, the crystals were rinsed with ethanol and immediately immersed in 1 mM ReCoA/ethanol solution. The TiO\(_2\) crystals were sensitized for 1 day and then washed with ethanol to remove any weakly adsorbed molecules prior to use. The samples were stored in a dark and dry environment to preserve sample integrity. The morphology of the sample surface was examined by atomic force microscopy (Figure S1 in the Supporting Information).

2.2. Sum Frequency Generation Spectroscopy

The broadband vibrational SFG setup is based on a 1 kHz Ti:sapphire regenerative amplifier system (Spectra Physics) producing 150 fs pulses at 800 nm with a pulse energy of 4 mJ. Half of the fundamental was used to pump a TOPAS-C OPA (Light Conversion) producing tunable infrared (IR) pulses with energies of 10–15 μJ and a bandwidth of ~150 cm\(^{-1}\). The remaining 2 mJ of 800 nm output is spectrally narrowed to ~10 cm\(^{-1}\) by using a home-built pulse shaper. The visible pulses were filtered to 2 μJ/pulse and combined with the IR at the sample surface. The angles of incidence of visible and IR are 65° and 50° with respect to the surface normal, respectively. The sample was mounted on a rotation stage to monitor the SFG signal as a function of azimuthal angle (φ) of TiO\(_2\) single crystal. The reflected sum frequency signal was collimated and focused onto the slit of a 300 mm monochromator (Acton Spectra-Pro 300i) and detected with a liquid nitrogen-cooled CCD (Princeton Instruments, PyLoN, 1340 × 100 pixels) operating at ~120 °C. The SFG signal from the sample surface was focused onto four pixel stripes in the vertical direction. The acquisition time for each SFG spectrum is between 1 and 3 min. All spectra were collected under the ppp polarization combination (p-polarized SFG, p-polarized visible, and p-polarized IR) and normalized by the SFG spectra of gold thin film measured under the same conditions.

In general, the vibrational SFG intensity from a sample can be expressed as:\(^ {35,37}\)

\[
I_{SFG} \propto |x^{(2)}_{NR,eff} + x^{(2)}_{R,eff}|^2 = |A_{NR,eff}|^2 + \sum_{q} \frac{A_q^{eff}}{\omega_{q} - \omega_{i} + i\Gamma_{q}}
\]

\(x^{(2)}_{NR,eff}\) and \(x^{(2)}_{R,eff}\) are the effective resonant and nonresonant nonlinear susceptibility tensors, respectively, which are products of susceptibility tensor elements and Fresnel coefficients. As shown in eq 1, \(x^{(2)}_{NR,eff}\) can be approximated as a sum of Lorentzian functions, where \(A_q^{eff} \omega_{q} \Gamma_{q}\) are the effective amplitude, frequency, and damping constant, respectively, of the qth SFG active vibrational mode and \(\omega_{q}\) is the frequency of the incident tunable infrared beam. Additionally, eq 1 shows that \(\omega^{(2)}_{NR,eff}\) have contributions from both \(A_{NR,eff}\) and \(\delta_{i}\) which are the effective amplitude and phase, respectively, of the nonresonant response.

2.3. Computational Methods

A slab of rutile (110) TiO\(_2\) was optimized with periodic boundary conditions as implemented in the SIESTA software package.\(^ {38}\) The TiO\(_2\)(110) slab was represented by a three-dimensional periodic slab with at least 15 Å of vacuum in the vertical direction to eliminate interactions between the top of the system and the periodic image of the bulk TiO\(_2\). The Perdew–Burke–Ernzerhof generalized gradient approximation density functional was used to describe electron exchange and correlation.\(^ {39}\) A gamma point sampling (single k-point) was used as well as a 200 Ry cutoff for the plane-wave basis. The default convergence criteria were used for both the electronic energy and nuclear geometry optimizations.
The slab was then cut to a small cluster model with 16 TiO₂ units. With the doubly deprotonated ReCOA catalyst bound through bidentate linkages, passivating water molecules and hydroxides were added to ensure neutrality. The catalyst, surface water molecules, and hydrogen-bonding hydroxide groups were allowed to relax at the density functional theory level using the ωb97xd hybrid functional, the LANL2DZ basis set for the Ti atoms, and the 6-31G(d) basis set for all other atoms. This functional allows for the modeling of dispersion, which will be utilized in modeling dimers. These optimizations were done using the Gaussian 09 program with its default optimization criteria and integration grid.

Simulations of SFG spectra are based on calculations of ab initio derivatives of polarizabilities and dipole moments with respect to normal mode coordinates, as in our previous work. In particular, $A_{\text{eff}}^{(2)}$ is calculated for ppp spectra, obtained as depicted on Scheme 1, using p-polarized fields for the sum-frequency, incident visible, and incident infrared fields. Because of symmetry, the only nonzero components of the second-order susceptibility are $\chi_{xxz}^{(2)}$, $\chi_{xz}^{(2)}$, and $\chi_{zxx}^{(2)}$. The effective second-order susceptibilities are calculated as follows:

$$\chi_{\text{eff},\text{ppp}}^{(2)}(\phi) = -L_{xx}^{(2)}(\alpha_{\text{SFG}}) L_{xz}^{(2)}(\alpha_{\text{IR}}) L_{zx}^{(2)}(\alpha_{\text{IR}}) \cos(\alpha_{\text{SFG}}) \cos(\alpha_{\text{IR}}) \sin(\alpha_{\text{IR}}) \chi_{xxz}^{(2)}$$

$$\chi_{\text{eff},\text{ppp}}^{(2)}(\phi) = L_{xx}^{(2)}(\alpha_{\text{SFG}}) L_{xz}^{(2)}(\alpha_{\text{IR}}) L_{zx}^{(2)}(\alpha_{\text{IR}}) \cos(\alpha_{\text{SFG}}) \sin(\alpha_{\text{IR}}) \cos(\alpha_{\text{IR}}) \chi_{zxx}^{(2)}$$

$$\chi_{\text{eff},\text{ppp}}^{(2)}(\phi) = L_{xx}^{(2)}(\alpha_{\text{SFG}}) L_{xz}^{(2)}(\alpha_{\text{IR}}) L_{zx}^{(2)}(\alpha_{\text{IR}}) \sin(\alpha_{\text{SFG}}) \sin(\alpha_{\text{IR}}) \cos(\alpha_{\text{IR}}) \chi_{zxx}^{(2)}$$

where $\alpha_{\text{SFG}} = 65^\circ$ and $\alpha_{\text{IR}} = 50^\circ$ are the incident angles of the visible and IR fields, respectively, as described in section 2.2. The values of α_{SFG} are obtained as follows:

$$\alpha_{\text{SFG}} = \arcsin(\frac{\omega_{\text{VIS}} \sin(\alpha_{\text{VIS}}) + \omega_{\text{IR}} \sin(\alpha_{\text{IR}})}{\omega_{\text{VIS}} + \omega_{\text{IR}}}) = 63^\circ$$

The Fresnel factors are computed as follows:

$$L_{xx}^{(2)}(\omega) = \frac{2n_{\text{interface}} \cos(\arcsin(\sin(\alpha_{\text{VIS}})/n_{\text{TiO}_2}))}{n_{\text{air}} \cos(\arcsin(\sin(\alpha_{\text{VIS}})/n_{\text{TiO}_2})) + n_{\text{TiO}_2} \cos(\alpha_{\text{VIS}})}$$

$$L_{xz}^{(2)}(\omega) = \frac{2n_{\text{interface}} \cos(\alpha_{\text{VIS}})}{n_{\text{air}} \cos(\alpha_{\text{VIS}}) + n_{\text{TiO}_2} \cos(\arcsin(\sin(\alpha_{\text{VIS}})/n_{\text{TiO}_2}))}$$

$$L_{zxx}^{(2)}(\omega) = \frac{2n_{\text{TiO}_2} \cos(\alpha_{\text{VIS}})}{n_{\text{air}} \cos(\arcsin(\sin(\alpha_{\text{VIS}})/n_{\text{TiO}_2})) + n_{\text{TiO}_2} \cos(\alpha_{\text{VIS}})}$$

where n_{TiO_2} is the index of refraction for the rutile TiO₂ surface, i.e., 2.56 (SFG), 2.52 (Vis), and 2.45 (IR, estimated value); n_{air} the index of refraction for air, i.e., 1.00; and $n_{\text{interface}}$ the index of refraction for the resulting interface, 1.64 (SFG), 1.62 (Vis), and 1.59 (IR), which are calculated using the model reported by Zhuang et al. ω as a subscript indicates a function of frequency, i.e., the IR, Vis, or SFG beam. Equation 2 then simplifies to

$$\chi_{\text{eff},\text{ppp}}^{(2)}(\phi) = -0.0608 \chi_{xxz}^{(2)} + 0.0727 \chi_{zxx}^{(2)} + 0.0705 \chi_{zxx}^{(2)}$$

$$+ 0.0510 \chi_{zxx}^{(2)}$$

The second-order susceptibilities, $\chi_{ij}^{(2)}$, are determined from the second-order hyperpolarizability elements, β_{abc} as follows:

$$\chi_{ij}^{(2)} = N_i \sum_{abc} R_{ai} R_{aj} R_{bj} \beta_{abc}$$

where N_i is the molecule number density and the rotation matrices transform the hyperpolarizability elements from the molecular coordinates frame (a,b,c) to the laboratory coordinate frame (i,j,k) = (x,y,z) through the Euler angles (θ, ψ, ϕ). The ZZX rotation matrix formalism is used for all rotations, as described in the following:

$$R_{ai} R_{aj} R_{bk} = Z_y Z_y Z_y = \begin{pmatrix} -\sin \phi \cos \theta \sin \psi + \cos \phi \cos \psi & -\sin \phi \cos \theta \cos \psi - \cos \phi \sin \psi & \sin \phi \sin \theta \\ \cos \phi \cos \theta \cos \psi - \sin \phi \sin \psi & \cos \phi \cos \theta \sin \psi + \sin \phi \cos \psi & \cos \phi \sin \theta \\ \sin \theta \sin \psi & \sin \theta \cos \psi & \cos \theta \end{pmatrix}$$

$$\beta_{abc,i} = \frac{\partial \beta_{abc}}{\partial Q_{ab}} \frac{\partial Q_{ab}}{\partial \phi}$$

For the SFG simulation, normal-mode analyses were performed for neutral gas phase ReCOA dimers in the absence of TiO₂, for the geometries of the dimer on the cluster, determined by optimization with the ωb97xd hybrid functional with dispersion. Frequencies, however, were computed by using the B3LYP hybrid functional and the 6-311G(d) basis set because they correlate better with experiments. The “ultraintegrated” integration grid, which consists of 99 radial shells and 590 angular points per shell, was used. Dipole and polarizability derivatives for each vibrational mode were printed using the keyword “iop(7,33 = 1)” during the frequency calculations. All DFT calculations were performed using the Gaussian 09 program. The normal-mode frequencies were scaled by 0.98.
The definition of the orientation angles is given in Scheme 1c and is discussed more in section 4 of the Supporting Information.

3. RESULTS AND DISCUSSION

3.1. Experimental Observations. Figure 1 shows the ppp-polarized SFG spectra of ReCOA on the TiO$_2$(001) and (110) surfaces in the carbonyl stretching region at azimuthal angles (γ) of 0°, 30°, 60°, and 90°. Here, γ is defined as the angle between the plane of the incident beams and the [001] and [−110] axes for the (001) and (110) surfaces, respectively. For ReCOA on the TiO$_2$(001) surface, the spectra showed no dependence on the azimuthal angle (Figure 1a). For ReCOA on the TiO$_2$(110) surface, the intensity of the peak at 2040 cm$^{-1}$ gradually increased when the azimuthal angle increased from 0° to 90° (Figure 1b).

Furthermore, a new band at \sim1920 cm$^{-1}$ was observed to increase with azimuthal angle, reaching a maximum amplitude at $\gamma = 90^\circ$. According to the IR results and our previous SFG results, the higher-frequency bands at 2035 cm$^{-1}$ in Figure 1a and at 2040 cm$^{-1}$ in Figure 1b can be assigned to the in-phase symmetric mode of the three CO groups (a$^{\prime}$ (1) stretch); the lower-frequency band at \sim1920 cm$^{-1}$ in Figure 1b can be assigned to the corresponding out-of-phase symmetric mode of the three CO groups.

The IR spectra were measured for ReCOA on nanoporous TiO$_2$ thin films (Figures S2 and S3) to facilitate the assignment of SFG peaks. The IR spectrum of the full-coverage ReCOA sample exhibits three CO stretching bands: an in-phase symmetric a$^{\prime}$ (1) stretch centered at \sim2045 cm$^{-1}$, an antisymmetric a$^{\prime\prime}$ stretch at \sim1938 cm$^{-1}$, and an out-of-phase symmetric a$^{\prime}$ (2) stretch at \sim1917 cm$^{-1}$. As discussed in the Supporting Information, the peak positions blue-shift with the degree of coverage because of the formation of dimers and trimers. The SFG results presented here correspond to the sample at saturated surface coverage.

The SFG spectrum at each azimuthal angle was fit according to eq 1. Figure 2a,b shows polar plots of the azimuthal dependence of the amplitude for (a) the a$^{\prime}$ (1) mode of ReCOA on TiO$_2$(001) and (b) a$^{\prime}$ (1) and a$^{\prime}$ (2) modes of ReCOA on TiO$_2$(110). Black squares (a$^{\prime}$ (1)) and red circles (a$^{\prime}$ (2)) are experimental results; solid lines are calculated results. The amplitude of the a$^{\prime}$ (1) mode at $\gamma = 90^\circ$ for the ReCOA/TiO$_2$(110) system is normalized to one with all other data points for each mode scaled accordingly.
ReCoA/TiO2(001) system is most likely a direct result of the underlying (001) substrate symmetry (C4v).

3.2. Theoretical Determination of Binding Mode. We then examined the binding structures of ReCoA on the TiO2(110) surface to understand the preferential alignment along the [−110] axis versus the [001] axis. In our previous studies, we found that bidentate binding modes are energetically favored.55,56 Additionally, dissociated water molecules are known to form on the TiO2(110) surface.57 We relaxed the bidentate binding structures of ReCoA on a TiO2(110) cluster passivated with water molecules using DFT methods as described in Computational Methods. The optimized bidentate binding mode along the [001] axis is labeled as A mode binding (Figure 3a), and the optimized binding along the [−110] axis is labeled as B mode binding (Figure 3b).

Figure 3. Binding structures of the ReCoA complex on the TiO2(110) surface along the (a) [001] axis labeled as A mode binding and (b) [−110] axis labeled as B mode binding. Hydrogen bonding to the ReCoA complex is depicted using single-dashed bonds. The atoms are colored as follows: green, Cl; silver, Ti; cerulean, Re; white, H; red, O; gray, C; and blue, N. The black arrows indicate the crystal axes on the surface for each panel.

We found that the B mode (Figure 3b) with a tilted bipyridine ring is the most energetically favorable, indicating that the ReCoA complex prefers to bind along the [−110] axis. Along this direction, the hydrogen bonding between the carboxylate group and the nearest OH group on the TiO2 surface is aligned approximately within the π-conjugated plane of bipyridine and carboxylate, leading to a low-energy binding mode. In addition, there are four other OH groups hydrogen-bonding to the complex. In contrast, along the [001] direction (A mode in Figure 3a), the hydrogen bonding between the carboxylate group and the nearest OH group on the TiO2 surface is aligned out of the π-conjugated plane of the bipyridine and carboxylate group. Also, four O–H hydrogen bonds have been replaced with two weak Cl–H hydrogen bonds. These interactions, or lack thereof, lead to a higher internal energy (by about 27 kcal/mol) binding mode. Therefore, the structural modeling indicates that the binding preference of ReCoA along the [−110] axis is associated with the nature of the TiO2 atomic configuration and water on the TiO2(110) surface.

3.3. Simulation of SFG Spectroscopy. In the B mode, the tilt angle θ (the angle of the bpy ring plane relative to the surface) is about 13°. However, when modeled as a monomer, the computed SFG spectra of this optimized geometry do not match the observed SFG spectra because the dipole derivative for the a’(2) stretch would be nearly parallel to the surface (Figure S5) and has negligible SFG intensity. In addition, experimental evidence indicates that there is a significant aggregation of ReCoA on the surface due to high surface coverage (see section 2 of the Supporting Information for details).55,56 Therefore, “dimer” models were constructed in which each ReCoA is separately bound to the surface along the [−110] axis but are still close enough to each other to interact as nearest-neighbors, with all four combinations of axial ligand orientation relative to the surface (Figure 4 and Figure S6). As shown in Table S1, θ is significantly increased in all instances of this model to values ranging from 18° to 32°, which are bigger than the 13° tilt angle observed in the B mode. These configurations minimize the intermolecular steric interactions from the axial ligands of each ReCoA unit that would result if the bipyridine rings were parallel with each other.

To determine the ligand arrangement that is most consistent with the experimental results, we compared the measured and simulated azimuthal angle dependence of the SFG signal. To determine the SFG spectra of each dimer model, the cluster was removed and the full frequencies and hyperpolarizabilities were then determined in the gas phase, as described in Computational Methods. The geometry changes induced by dimerization in these models are retained. These models take into account nearest-neighbor effects, which were found to be important in simulating the amide I stretch of proteins.43 The theoretical azimuthal dependence of the effective SFG amplitudes for the a’(2) mode and the a’(1) mode are given as circular polar plots in Figure S6 for each of the four possible dimers as compared to the experimental spectra.

The comparison of the azimuthal dependence plots in Figure S6 shows that the best agreement between the measured and calculated amplitudes for modes that correspond to the a’(2) mode (1917 and 1925 cm−1) and the a’(1) mode (2023 cm−1) comes from the spectra for the entire dimer with the axial CO ligands facing the surface (structure I in Figure S6 and Tables S1 and S2). The geometry for this orientation is given in Figure 4 where the tilt angles are 26° and 18° as defined by the diagram. Figure S7 shows that the agreement is improved with a slight tilt of 4° of the entire dimer relative to the surface normal, likely due to insufficient exploration of minima near the ones determined by DFT geometry optimizations.

The final polar plots shown in Figure 2b for the a’(2) mode were produced by averaging the contributions from the modes at 1917 cm−1 and 1925 cm−1. The a’(1) mode corresponds to the
2023 cm\(^{-1}\) band. The polar plots given in Figure S7 were averaged with that of equivalent twisted \(-20^\circ\) about the surface normal to account for the C\(_2\) symmetry of the (110) surface and therefore the direction of the axial CO ligands that determine the dipole and polarizability derivatives. The agreement between the theoretical and experimental polar plots (Figure 2b) indicates that the ReCOA molecules are bound as shown in Figure 4. This conclusion is corroborated by the energetic analysis given in Table S1, which shows that this structure has the minimum energy (\(-28.50\) kcal/mol) relative to the structure with both Cl facing the surface (IV), when hydrogen bonding with the surface is accounted for. The other possibilities with exactly one Cl facing the surface have energies more positive than this reference.

We note that the rings here are not perfectly planar, especially in the case of the monomer with the Cl facing the center of the cluster, where the dihedral of the 5' and 6' C atoms is \(-13.7^\circ\).

This kind of twisting is similar to that seen in the crystal structures of other Re(bpy) complexes,\(^{50-63}\) especially in the case of \([\text{Re(bpy-tBu)}(\text{CO})_3]^{6+}\) (OTf) where this dihedral angle is \(8.2^\circ\).\(^{60}\)

4. CONCLUSION

We have elucidated the arrangement of the rhenium bipyridyl catalyst (ReCOA) on different TiO\(_2\) surfaces with distinct symmetries by combining vibrational SFG spectroscopy and DFT calculations of the SFG spectra. We find that ReCOA has a well-defined anisotropic arrangement on the TiO\(_2\)(110) surface, in contrast to the isotropic binding to the more symmetric TiO\(_2\)(001) surface. On the (110) surface, a maximum SFG intensity is observed when the incident light plane is aligned along the [001] axis. We find that the complex binds along the [110] axis of TiO\(_2\)(110), stabilized by favorable hydrogen-bonding interactions between the carboxylate group and the water/OH groups on the TiO\(_2\) surface. The binding mode of the ReCOA dimer, bound along the [110] axis, with tilt angles of 18° and 26° (both carboxyls facing the surface), generates an average SFG spectrum that agrees with experimental measurements.

Overall, our study demonstrates the ability to prepare an electrocatalyst–semiconductor system with a preferred in-plane average molecular arrangement. The ability to control and characterize the molecular ordering and orientation through careful selection of the underlying substrate should be particularly valuable because the molecular orientation, relative to the electrode interface, can significantly affect the catalytic performance.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b03165.

AFM image of TiO\(_2\)(110) single-crystal surface, FTIR spectra of ReCOA on TiO\(_2\) nanoporous thin film, SFG spectra of ReCOA on TiO\(_2\)(001) surfaces, fitted amplitude values, electronic energies and theoretical SFG spectra for all ligand orientations of the dimer on TiO\(_2\) along with dipole derivatives and displacement vectors for the stretches of the isolated monomer and for the dimer with both CO's facing the surface, additional references, and theoretical coordinates (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
*Tel: (203) 432-6672. E-mail: victor.batista@yale.edu.
*Tel: (404) 727-6649. E-mail: tlian@emory.edu.

Present Addresses
\(^{(D.X.)}\) Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516.
\(^{(C.L.A.)}\) School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043.

Author Contributions
A.G. and B.R. contributed equally to this work.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by Air Force Office of Scientific Research Grant FA9550-13-1-0020 (V.S.B. and T.L.). V.S.B. acknowledges high-performance computing time from NERSC and from the high-performance computing facilities at Yale. B.R. acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1122492. We thank Zheyuan Chen for help in AFM measurement, John Bacs (Emory Crystallography Lab) for X-ray analyses of TiO\(_2\) single crystals, and Melissa Clark and Cliff Kubiak (UC San Diego) for helpful discussions.

■ REFERENCES

