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Motivation

Establish a connection between macroscopic properties (e.g.
entropy, heat capacity, surface tension, etc.) and microscopic
(e.g. molecular geometry, intermolecular interactions,
molecular mass, etc.)
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Macrostate - Microstate

Macroscopic state or Macrostate

The state of the system is defined by the values adopted by macroscopic
variables called state functions that are related through a state equation. The
state of a pure substance in equilibrium is defined by three variables, e.g.
pressure, temperature and number of particles.

Microscopic state or Microstate

To specify a mictrostate in the context of classical mechanics we need the
coordinates and velocity of all the particles in the system, whereas in
quantum mechanics we need the wavefunction of the system.
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Phase space

Is the set of all the possible configurations of the system
In an N particle system, each configuration is determined by 3N spacial
coordinates and 3N velocity components.
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Statistical Sampling
Time averages and probability densities

The instantaneous value of a given property A(t) in an N
particle system is a function of the positions and momentum of
the N particles at instant t

A(pN(t), rN(t)) ≡ A(p1,p2, · · · , r1, r2, · · · , t)

The experimental measurement comes from a time average:

Ā = lim
τ→∞

1
τ

∫ τ

0
A(pN(t), rN(t))dt
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Statistical Sampling
Time averages and probability densities

Alternatively, A can be thought of as an average over all the
possible configurations. If we call ρ(pN , rN) to the probability of
finding a configuration with pN moments and rN positions then:

〈A〉 =
N∑
p

N∑
r

A(pN , rN)ρ(pN , rN)

Ergodic Hypothesis:

lim
τ→∞

1
τ

∫ τ

0
A(pN(t), rN(t))dt =

∑
p

∑
r

A(pN , rN)ρ(pN , rN)
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The probability density

Lets consider a system described by the following variables:

N: number of particles in the system
〈E〉: average value of the total energy
ni : number of particles in the i state
Ei : energy of the i state

Then the following equalities are verified:∑
i ni = N∑
i PiEi = 〈E〉 where Pi = ni

N

The configuration of the system is determined by the ni values:
{n1,n2, · · · ,nN}
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The probability density

A given configuration can be reached in W different ways.
For example:

{N,0,0, ...} →W = 1
{N − 1,1,0, ...} →W = N
{N − 2,2,0, ...} →W = 1

2N(N − 1)

In general W = N!
n1!n2!n3!... (Exercise: probe it)

The most probable distribution is the one that maximizes W (or
ln(W )) considering the following restrictions:∑

i ni = N∑
i PiEi = 〈E〉
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The probability density

These restrictions can be introduced through the Lagrange
multiplier method:

∂

∂ni

[
ln W − α

(∑
ni − N

)
− β

(∑
niEi − 〈E〉

)]
= 0

∂ ln W
∂ni

− α− βEi = 0

with ln W = ln N!− ln[n1!n2!n3!...]

For x sufficiently big, the following equality is verified:
ln x! = x ln x − x
Hence,

ln W ≈ N ln N − N −
∑

i

ni ln ni +
∑

i

ni = N ln N −
∑

i

ni ln ni

∂ ln W
∂ni

= − ln ni − 1⇒ − ln ni − α− βEi = 0⇒ ni = e−α−βEi
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The probability density and the Boltzmann factor

ni = e−αe−βEi represents the most likely pupulation of the state
with Ei energy.

Si
∑

i ni = N =
∑

e−αe−βEi ,⇒ e−α = N∑
e−βEi

⇒ ni
N = e−βEi∑

e−βEj

Using thermodynamical argument it can e established that
β = 1/kT (Exercise: prove it!)

Boltzmann distribution: probability density at constant N,V ,T

P(Ei) =
ni

N
=

e−Ei/kT∑
j e−Ej/kT

e−Ei/kT : Boltzmann Factor→ Ei vs kT∑
j e−Ej/kT : Partition Function, Q
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Alternatively

Important postulate
A thermodynamic state at equilibrium is defined by a
distribution that maximizes the entropy of the system defined
as:

S = −k
∑

i

Pi ln[Pi ]

Exercise: Prove that by maximizing entropy one obtains the
same result as we did for W . What is the relation between S
and W?
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An important consequence

The lower the energy of a state the higher the probability of
visiting that state
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The partition function

Q =
∑

j

e−Ej/kT

This function contains all the thermodynamic information of a
system in equilibrium. For example the total energy of the
system can be calculated as the sum of the population of each
state multiplied by its energy:

E =
∑

i

EiP(Ei) =
∑

i

Ei
e−Ei/kT

Q
=

kT 2

Q
∂Q
∂T

From Q we can derive the different state functions that describe
the system:

Energy E =
kT 2

Q
∂Q
∂T

Entropy S = k ln W = E/T + k ln Q

Free Energy A = E − TS = −kT ln Q
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Time averages and probability density

In the classical limit, the state distribution tends to a continuous
and the sum can be replaced by an integral over all the
positions and momenta of the N particles:

〈A〉 =

∫
dpNdrNA(pN , rN)ρ(pN , rN)

At constant N, V and T , the probability density ρ(pN , rN) is the
Boltzmann distribution expressed in the continuum:

ρ(pN , rN) =
e−E(pN ,rN )/kT∫

dpNdrNe−E(pN ,rN )/kT
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Time Averages and Probability Density

E(T1) = E(T2) = E(T3) = E(T4) = E(T) 6= E(H)

P(T ) =
4× e−E(T )/kT

4× e−E(T )/kT + e−E(H)/kT

P(H) =
e−E(H)/kT

4× e−E(T )/kT + e−E(H)/kT

〈E〉 =
∑

i

E(i)P(i) =
4× E(T )× e−E(T )/kT + E(H)× e−E(H)/kT

4× e−E(T )/kT + e−E(H)/kT
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Phase Space Exploration

Ergodic Hypothesis

lim
τ→∞

1
τ

∫ τ

0
A(pN(t), rN(t))dt =

∫
dpNdrNA(pN , rN)ρ(pN , rN)

Two approximations to the problem:

Ā = limτ→∞
1
τ

∫ τ
0 A(pN(t), rN(t))dt Molecular Dynamics

〈A〉 =
∫

dpNdrNA(pN , rN)ρ(pN , rN) Monte Carlo
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Molecular Dynamics
The particles in action

Molecular dynamics consists on evolving in time the positions of the particles
according to the forces

FI = −∂E(RI)

∂RI
= ma

The positions can be evolved according to their Taylor expansion in t ±∆t :

r(t + ∆t) = r(t) + ∆tv(t) +
1
2

∆t2a(t) + · · ·

r(t −∆t) = r(t)−∆tv(t) +
1
2

∆t2a(t) + · · ·

Adding these expressions we obtain the Verlet algoritm that allows to
calculate the coordinates of the particles step by step from the acceleration a:

r(t + ∆t) = 2r(t)− r(t −∆t) +
1
2

∆t2a(t)
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Temperature and Ensambles

E ,V and N constant: microcanonical ensamble.

The instantaneous temperature T (t) depends on the kinetic
energy of the particles in the system:

Ec =
3
2

NkT =
1
2

N∑
i=1

mi〈v2
i 〉 ⇒ T (t) =

1
3Nk

N∑
i=1

mi〈vi(t)2〉

If instead of the total energy we fix the temperature (this is
usually achieved in molecular dynamics with an algorithm
called thermostat that modifies the total energy but produces
trajectories at constant T ). Hence, this leads to a T ,V and N
ensamble called canonical ensamble.

Another important ensamble is the one with T , P y N constant:
isothermic—isobaric ensamble
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Integrating over the phase space

An alternative approach to the time domain propagation is to
evaluate 〈A〉 as an average over all the microstates of the
system:

〈A〉 =

∫
dpNdrNA(rN)e−E(pN ,rN )/kT∫

dpNdrNe−E(pN ,rN )/kT

Now, if we separate the kinetic and potential (Exercise: when
is this possible?):

E(pN , rN) =
N∑

i=1

|pi |2

2m
+ E(rN)

〈A〉 =

∫
dpNe−E(pN )/kT ∫ drNA(rN)e−E(rN )/kT∫

dpNe−E(pN )/kT
∫

drNe−E(rN )/kT
=

∫
drNA(rN)e−E(rN )/kT∫

drNe−E(rN )/kT
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Monte Carlo Integration
Trusting in randomness

〈A〉 =

∫
drNA(rN)e−E(rN )/kT∫

drNe−E(rN )/kT

≈ E(r1
N)e−E(r1

N )/kT + E(r2
N)e−E(r2

N )/kT + E(r3
N)e−E(r3

N )/kT + · · ·
e−E(r1

N )/kT + e−E(r2
N )/kT + e−E(r3

N )/kT + · · ·

where ri
N represents each one of the randomly generated configurations. For

a system of N particles with m points in each direction the number of terms is
m3N

The random selection of ri
N is very inefficient because — in general —

most of the terms contribute with a negligible Boltzmann factor
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The Metropolis Method
Boltzmann Sampling

The goal is to generate the configurations ri
N whose

probabilities are proportional to e−E(ri
N )/kT

Metropolis Algorithm:

1) Evaluation of E(rN
i ), the energy of the i configuration

2) Generation of rN
i+1 by a random displacement of a particle

3) Evaluation of E(rN
i+1)

E(rN
i+1) ≤ E(rN

i )⇒ the new configuration is accepted

E(rN
i+1) > E(rN

i )⇒ the new configuration is accepted only
if e−∆E/kT ≥ rand(0,1)
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