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Summary. Maximum entropy is an optimal technique of image reconstruc
tion, widely applicable in astronomy and elsewhere. We present a general
purpose algorithm, capable of generating maximum entropy images from a 
wide variety of types of data. 

1 Introduction 

Maximum entropy is being increasingly widely used as a general and powerful technique 
for reconstructing positive images from noisy and incomplete data. In astronomy, it has 
been used throughout the electromagnetic spectrum for radio aperture synthesis (Gull & 
Daniell 1978; Scott 1981), for optical deconvolution (Frieden & Swindell 1976; Frieden & 
Wells 1978; Bryan & Skilling 1980), for X-ray imaging (Gull & Daniell 1978; Willingale 
1981) and for gamma-ray imaging (Skilling, Strong & Bennett 1979), and for eclipse 
mapping of accretion discs (Horne 1982). The technique can also be used in other fields 
such as structural molecular biology (Bryan et al. 1983) and medical tomography (Minerbo 
1979; Kemp 1980). As well as producing images of optimal quality, maximum entropy can 
also be used to re-calibrate poorly known parameters such as phases or instrumental drifts 
(Scott 1981 ). A review of many of these applications is given in Skilling ( 1981 ). 

Many of these papers, and others referred to therein, contain comparisons between 
reconstructions by conventional methods and by maximum entropy. We believe that these 
comparisons clearly demonstrate the superiority of maximum entropy for producing 
optimum general-purpose restorations of images from incomplete and noisy data. 

In this paper we are concerned with presenting the rationale and details of a robust and 
efficient algorithm for computing maximum-entropy images which has been developed in 
Cambridge. This algorithm deals routinely with images of up to a million or more pixels, 
and with dynamic ranges well in excess of 10 000. It can be applied to many different 
problems with the minimum of changes, by rewriting a few computer subroutines which 
define the transforms between image and data. 

In Section 2 of the paper, a suitable form of the maximum entropy criterion is set up. 

*Present address: European Molecular Biology Laboratory, 6900 Heidelberg, Germany. 
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112 J. Skilling and R. K. Bryan 

Section 3 is devoted to a survey of algorithms and develops the general-purpose algorithm 
we recommend. Section 4 summarizes the ingredients of this successful program. 

2 The maximum entropy criterion 

An image can be regarded as a set of positive numbers fi, f 2 , •.. , fN which are to be 
determined, and on which the entropy 

N 
S(f) = - L Pj logpj, (1) 

j == 1 

is defined. Use of this form of entropy (Shannon 1948) in the context of image recon
struction is originally due to Frieden (1972). 

The theoretical foundation of the maximum entropy method in data analysis is that 
this method is the only consistent way of selecting a single image from the very many 
images which fit the data. Shore & Johnson (1980, 1983) proved this axiomatically, a 
more readable account of their ideas has been given by Gull & Skilling (1983), and 
a proof of intermediate formality appears in Livesey & Skilling ( 1984). These papers show 
that maximum entropy is the only method which does not introduce correlations in the 
image, beyond those which are required by the data. 

Entropy can also be justified in information-theoretic terms. Given an image radiating 
with intensity pattern'.tj, the entropy measures the number of bits of information needed 
to localize the position j of a single radiated photon. Maximizing S, subject to observational 
constraints, involves seeking a maximally non-committal answer to the fundamental question 
'Where would the next photon come from?' (Skilling & Gull 1984). 

The practical merit of maximizing entropy is that the resulting image has minimum 
configurational information, so that there must be evidence in the data for any structure 
which is seen, and the displayed structure is uniquely easy to comprehend. Also, the 
physically important requirement of positivity is automatically invoked, since the entropy 
does not even exist if any of the .ff are negative. Numerically, it is far easier to ensure 
positivity via a single, smooth function such as S, than via N separate inequality constraints 
.ff ~ 0. 

The observational constraints on permitted reconstructions come from data Dk related in 
some known way to the image, and subject to some form of noise. Thus, for additive noise, 

(2) 

where R is the response function of the observing equipment, ak is the standard error on 
datum k and nk is a random variable of zero mean and unit variance. In any linear experi
ment, Rk(f) = 'LRkjfj so that R becomes a matrix. For example, in interferometry, Rk(f) 
would be the Fourier component off corresponding to spacing k, so that Rkj would be a 
Fourier matrix. Likewise in deconvolution, Rkj would be a convolution matrix, (usually of 
Toeplitz form). 

Naively, one might attempt to recover f from the data by applying R- 1 , but this fails in 
principle whenever the data are incomplete, because R- 1 is not uniquely defined. It also 
fails in practice whenever R -i is badly conditioned, as in most deconvolution problems. 
Inverse filters alleviate this difficulty by modifying R- 1 to make it better conditioned, 
albeit incorrect in the sense that retransforming by R will not reproduce the original data. 
What one can do correctly, using R itself instead of its inverse, is eliminate those f which 
are inconsistent with the data. The data can do no more than this. 
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Maximum entropy image reconstruction 113 

The fonnal observational constraint on reconstructions f is set up by comparing the actual 
(noisy) data Dk with the simulated data 

Fk = Rk(f) (3) 

which would be obtained (in the absence of noise) if the pattern being observed were 
indeed represented by the numbers f. A reconstruction f is said to be feasible if the 
simulated data agree with the actual data to within the noise. Feasible reconstructions 
are those which are not contradicted by the data. Note that the comparison is made only 
with the data points actually measured. There is no assumption, implicit in inverse filter 
methods, that unmeasured data values are zero. 

A single constraint statistic C(f), usually chi-squared (Ables 1974;Gull&Daniell 1978) 
is used to measure the misfit; 

(4) 

where the summation is over the observed k. Different choices for C(f) are also possible 
(Bryan & Skilling 1980), and may be preferable in certain circumstances. For other fonns 
of noise, e.g. Poisson, an appropriately modified statistic C(f) should be used. 

Statistical analysis indicates some upper bound Cairn to the values which C can plausibly 
take. For chi-squared, the largest acceptable value at 99 per cent confidence is about 
(M + 3.29yM), where Mis the number of observations. It is much easier to use a single 
statistic than to attempt to fit each separate datum, both because this avoids an unwieldy 
proliferation of Lagrange multipliers and because one can construct alternative statistics 
C(f) that tolerate occasional individual errors of several standard deviations. For example 
one can ignore extreme outliers in the calculated noise residuals (Bryan & Skilling 1980; 
Burch, Gull & Skilling 1983). 

The strict maximum entropy criterion requires one to select that particular feasible image 
which has the greatest entropy. One maximizes S subject to C ~ Cairn· If the unconstrained 
maximum of S satisfies this constraint, then this will be the maximum entropy solution -
the data are too noisy for any information to be extracted. Otherwise the solution will lie 
on the boundary C = Cairn and we have an optimization problem with an equality constraint 

f, = 0 

Figure 1. The S criterion and the x 2 statistic in [-space for a 3-cell map normalized to 'Ef = 1. S surfaces 
are convex and x 2 surfaces are ellipsoids. A is the image which fits the data exactly; B is the maximum
entropy image. 
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114 J. Skilling and R. K. Bryan 

to solve (Fig. 1). As usual for such problems, a Lagrangian function Q = S - A.C can be set 
up, and the solution will lie at an extremal of Q for some value of the Lagrange multiplier A.. 
From this, f can be determined via 

log A -logfj = (A."Lf) ac/afj, A= exp ("Lp; logf;). (5) 

A is a weighted mean of the fj which can be interpreted as the default value to whichfj will 
tend if there are no data pertaining to cell j cac;afj = 0). 

In many applications, interferometry being typical, the total flux "Lf has a special status, 
as indeed it does in the entropy itself. The maximum entropy criterion may accordingly be 
modified to maximize S subject to C = Cairn and to some constraint on "L f. This will be 
found at an extremal of S - µ"Lf- A.C, where µ is an extra multiplier which has the 
operational effect of changing A. One can either chooseµ, and hence A, to fit some given 
value of total flux "L f, or, more simply, one can use A itself as a user-defined default 
intensity or 'sky background'. This is what the astronomer usually wants. Formally, this is 
equivalent to modifying the entropy to 

S = - Lfj[log (fj/A) -1] 
j 

whose derivatives are 

(6) 

(7) 

It is this latter form ( 6) of S which is used in this paper, although the algorithms which are 
presented can easily be modified to cope with the strict form of S, or indeed with other 
modifications of it. 

For any linear experiment, the surfaces of constant chi-squared (Fig. 1) are convex 
ellipsoids in N-dimensional image space. Since the entropy surfaces are strictly convex, the 
maximum entropy reconstruction is unique. 

In this section we have set up the maximum entropy method as an equality constrained 
optimization problem. It is important that the numerical algorithm used solve the problem is 
reliable, in the sense that it should produce the correct solution, or give a definite indication 
of failure. There is no point in using an algorithm which terminates after a certain number 
of iterations if there are no tests for fitting the data and for maximizing the entropy. In 
Section 3 we survey various algorithms, and develop a general purpose algorithm which we 
believe satisfies these criteria. 

3 Maximum entropy algorithms 

Entropy being intrinsically non-linear, the computational problem is one of constrained 
non-linear optimization. The problem is also large-scale, since an image contains N elements 
fj to be determined, and N may be a million or more. The number M of observations may be 
many thousand. The image and data may be considered as vectors in N or M-dimensional 
linear spaces, even if they represent physical arrays in 1, 2, or even 3 dimensions. It follows 
immediately from the size of the problem that vector operations such as scalar products, 
adds, multiplies etc. are allowed in N-dimensional image-space and M-dimensional data
space, but matrix operations of O(N2 ) or O(M2 ) are prohibited. Consequently for these 
large-scale images, it is not possible to use methods such as Newton-Raphson iteration, which 
has been employed successfully on smaller problems (Frieden 1972). 
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Maximum entropy image reconstruction 115 

The non-linear nature of the problem also forces the algorithm to be iterative. This neces
sarily involves repeated passage from image-space to data-space via the response function 
Rkj· Each trial image, for example, must be transformed to the corresponding dataset Fk 
before its constraint statistic C can be evaluated. There must also be repeated feedback 
from data-space to image-space, which again involves R. For example the gradient ac/a Ji, 
which is useful in determining how to adjust a trial image in order to fit the data better, is 
calculated by 

ac/afj = L (aFk/afj)(ac/aFk) = L Rk;2(Fk - Dk)Ja%. (8) 
k k 

The summation is now on the first index of Rki' showing that feedback is obtained through 
the transpose of R (not its inverse, which may well not exist). 

All the algorithms discussed in this paper are based purely on vector operations in image
space and in data-space, together with image-data transformations by R or its transpose. 
Normally, the major computational overhead is in the image-data transformations, and 
these should be coded efficiently. Thus an interferometric problem, for which R is a 
Fourier transform, should be coded via a Fast-Fourier-Transform routine, using O(NlogN) 
operations. 

In the discussion of algorithms which follows, Section 3 .1 discusses a potentially promis
ing algorithm which nevertheless proved insufficiently powerful. Sections 3.2, 3.3, 3.4, 3.5 
develop the basic ideas for a successful technique. This is presented in Section 3.6 (which 
sets up the image-space structures needed) and in Section 3 .7 (which gives the procedure for 
control of these structures). 

3.1 THE 'INTEGRAL EQUATION' 

Gull & Daniell (1978) attempted to find the solution of (5) by directly maximizing 
Q = S - A.Cat fixed A.. They used the iterative form 

(9) 

where (n) denotes the nth iterate. This procedure had the attractive feature that successive 
iterates were all automatically positive, because of the exponential function. Also, the 
algorithm allowed high values off to develop in relatively few iterations, again because of 
the exponential. This was of considerable importance in Gull & Daniell's astronomical 
applications, because the dynamic range of their images was often 0(1000). 

Unfortunately, the exponential also introduced instability into the iteration and they had 
to smooth successive iterates by setting 

(10) 

Even then, the behaviour of the algorithm was erratic and unstable, especially at high values 
of A., and the rroportion p often had to be reduced so severely that the algorithm effectively 
stopped. This instability had also been noted by Willingale (1979). 

Nevertheless, the work of Gull & Daniell was of crucial importance in demonstrating the 
possibility of computing high-resolution maximum-entropy images for a variety of different 
experiments. 
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3.2 STEEPEST ASCENTS 

The simplest approach is to maximize Q = S - A.C by steepest ascents, using 

(11) 

for suitable x. The catastrophic disadvantage of this method is that in almost every case, 
whenever xis sufficiently large to enable high valuesfj of the image to develop significantly, 
there are also cells with negative aQ/afj at which fj becomes significantly negative. The 
entropy is not defined when fj < 0, so that after each iteration any negative f's must 
be reset to small positive values. If many f's become negative, the effect is to stop the 
algorithm making progress towards a maximum. 

3.3 CONJUGATE GRADIENTS 

The standard way of improving a steepest ascent algorithm is to use the conjugate gradient 
technique (Fletcher & Reeves 1964) or a variant of it (e.g. Polak 1971; Powell 1976, 1977). 
At the nth iteration, instead of using "VQ itself as a direction in which to look for a 
maximum of Q, one uses only that part e(n) of "VQ which is conjugate to the previous 
directions (eCr>, r= 1, 2, ... , n -1), defined by e(n)r. "V"VQ·e(r}= 0. In the terminology 
of this paper, the technique seeks a maximum of Q over the points f (n) + x e(n) lying along a 
search direction e(n), where 

e(n) = _ "VQ + ~e(n-1) (12) 

with ~ = I "VQ(n) 12 /I "VQ(n- l) 12 or a formal equivalent thereof. The coefficient ~ in the 
search direction is derived on the assumption that Q has constant curvature. However, 
Q in maximum entropy is highly non-quadratic, and it may not be sensible to assume that 
curvature information can be carried forward for several iterates. 

Even so, as noted by Wernecke & d'Addario (1977) for a similar problem, conjugate 
gradients afford a considerable improvement over steepest ascents, although the algorithm 
remains plagued by negative values of fj, and still concentrates too much on small values. 

3.4 SEARCH DIRECTIONS FOR THE UNCONSTRAINED PROBLEM (FIXED A) 

The conjugate gradient technique attempts to build up information about the N x N Hessian 
matrix "V"VQ by using successive vectors "VQ, calculated at successive points f(n)_ It then 
uses a specific linear combination of the various "VQ as a search direction along which Q 
is maximized either by a fixed coefficient based on a Newton-Raphson increment or by an 
exact line search. 

In the maximum entropy problem the main computational cost of this lies in generating 
the successive vectors "VQ, each of which requires an image-data transformation R followed 
by its transpose to calculate "VC (equation 8). Scalar products between the vectors are 
much quicker to compute. Accordingly, one can gain considerable extra flexibility at 
negligible extra computational cost by constructing, not merely one line along which to 
search, but rather a full subspace spanned by several vectors. 

Let the vectors ei, e2 , .•• , er (r < 10 say) be these base vectors. Then, within the 
subspace so spanned, one may construct a quadratic model 

(13) 
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Maximum entropy image reconstruction 117 

for the value of Q at increment Sf= xµeµ- Note the covariant and contravariant indices: 
Greek indices refer to subspace quantities. The components of the model are 

(14) 

chosen to agree witJ::, the local gradient and curvature components of Q(f) itself. Then, 
within the subspace, Q is maximized at 

µ - -(H )-1 Q X - µv v' (15) 

the evaluation of whic~ involves the trivially quick task of solving r simultaneous equations. 
The resulting value of Q, moreover, is greater than could have been obtained directly from 
conjugate gradients, because such a point is necessarily included in the subspace spanned by 
theeµ-

As suggested above, Hµv is obtained from the current and the previous r - 1 evaluates 
of \!Q. However, this presupposes that the curvature of Q(f) remains nearly constant even 
when f is incremented r -l times. That is an extremely severe restriction on the increment 
length I Sf I, since in the maximum entropy problem the curvature of Q is dominated by 
1/ ii terms from the entropy, and these are very sensitive to small changes whenever a 
particular ii is small. It is better to evaluate the search directions at the present position 
fas 

e2 = \l\!Q. \!Q, ... , (16) 

Admittedly this involves the conventionally unorthodox step of discarding information 
from previous iterates, but all our attempts to use old curvature information resulted in 
marked reductions in algorithm efficiency. 

3.5 ENTROPY METRIC 

Even with models which are completely updated at each iteration, some limit must be 
placed on the difference Sf between successive iterates, as the quadratic model will still 
be inaccurate at large distances. One should maximize Q(x) subject to I Sf 12 ,;;;: !% for 
some 10 • 

The precise form of the distance limit bears closer investigation. So far, the main 
disadvantage of the search-direction algorithms has been their tendency to allow negative 
values off. A distance limit ".i(Sfi)2 ,;;;: !% alleviates this, but at the cost of drastically slowing 
the attainment of high values. However, the distance limit can be modified to overcome this 
defect. Logarithmic modification ".i (S fd fY ,;;;: !% is too severe on low values, and the 
intermediate form 

"f..(Sfi)2 /fi,;;;: 15 (17) 
i 

is a good practical compromise. It discriminates in favour of allowing high values to change 
more than low ones, but not excessively so. The actual value of!% should be O(".if) on 
dimensional grounds, and values around OJ ".if to 0.5 ".if are useful in practice. 

Using a distance in this form is equivalent to putting a metric 

(18) 

onto image-space (note covariant and contravariant indices). But this is just minus \!\JS 
(Bryan 1980)! This metric is far simpler and more convenient than the Hessian metric 
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gij = a2 Q/ofi ofj normally used (Sargent 1974) in variable-metric non-linear optimization 
problems. 

Using - V'VS as the metric is the single most important key to the development of a 
robust algorithm. With a non-Cartesian metric, the gradient direction VQ = oQ/o fj 
appears initially in covariant form. In order to increment the contravariant vector /, its 
index must be raised by gii, giving f i oQ/o f i [ componentwise multiplication, henceforth 
represented by f('VQ)] as the basic contravariant search direction. Furthermore, the second 
derivative matrix'VVQ = o2 Qjofiofi must likewise be premultiplied by gmi if it is to 
map contravariant vectors onto contravariant vectors. This gives the revised set of search 
directions 

ei = f('VQ), e2 = f( 'V'VQ) f(''VQ), ... , 

We note here that the integral equation (9) can be written as 

tJn+t) =A exp [oQ(f(n))/ofj- oS(f(n))/ofj] 

= tJn) exp [a Q(f(n))/a fi ]. 

On expanding the exponential to first order, we obtain 

f~n + 1) - f~n) = f~n) a Q(f(n))/of.1·· 
I I I 

(19) 

So, for small increments, the integral equation is equivalent to a steepest ascent optimization 
using the entropy metric. 

3.6 SEARCH DIRECTIONS FOR THE CONSTRAINED PROBLEM 

One difficulty with maximizing Q is that of A., which still has to be iterated to fit C =Cairn· 
This double iteration is clumsy and inefficient. However, the use of different values of A. 
involves using different proportions of S and C in Q, which suggests using two models in 
the subspace, one for S and the other for C, and attempting somehow to solve the actual 
problem of maximizing S subject to C =Cairn directly without using A. explicitly. This 
would also be a more general approach, since there are non-linear experiments R for which 
the entropy maximum on the constraint surface may not be obtainable by maximizing Q, 
whatever value of A. is chosen. Examples in which the desired extremal of Q is not a 
maximum are given in Bryan (1980) and Livesey & Skilling (1984). 

The subspace itself would be constructed from 

(1) 2 directionsf(VS) andf(VC), 

(2) 4 directions,[( VVS) and f(VVC) operating on (1 ), 

(3) 8 directions,f(VVS) andf(VVC) operating on (2), 

and so on. But f( 'V'VS) is minus the identity operator and nothing new is obtained by 
operating with it. The search directions reduce to 

(l)f('VS), f('VC) 

(2) f ( 'VVC) f ('VS), f ( 'V 'VC) f ( VC) (20) 

(3) f('V 'VC) f( 'V'VC) f('VS), f('V'VC) f( 'V'VC) f ('VC) 

and so on. It is worth repeating that the operator 'V'VC, though formally a matrix, can be 
applied by vector operations allied to image-data transformations. 
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Maximum entropy image reconstruction 119 

The factors off i in the search directions discriminate in favour of high values, and this 
helps to keep all the values positive. In fact it is rare for any cell to be sent negative when 
these search directions are properly controlled. Protection against stray negative values is 
still needed, but it does not slow the algorithm and is no longer a source of difficulty. 

The family (20) of directions is sufficiently powerful that the first four enable most 
practical problems to be solved. Indeed even this level of complexity is usually unnecessary, 
as the third and fourth directions can normally be replaced by a single difference combina
tion, giving just three search directions 

e1 =/('VS) 

e1 = f('VC) 

e3 =I 'VS 1- 1 f('V'VC)f('VS) - I 'VC 1- 1 f('V'VC)f('VC). 

Here the entropy metric is used to define the lengths 

With these three (or four or more) search directions, quadratic models for S and C 

S(x) =So+ Sµxµ - YzgµvXµXv, C(x)= C0 + Cµxµ + YzMµvXµXv 

where 

M =eT·'V'VC·e µv µ v 

are constructed in the subspace 

parameterized by x, within which the length-squared of the increment 5 f is 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

It is rather remarkable that such a small space can capture enough of the structure of a 
non-linear optimization problem in a million dimensions. 

3J CONTROL PROCEDURES 

Control of the algorithm now passes into the subspace, in order to determine suitable 
coefficients xµ for the search directions. The problem in the subspace becomes one of 
optimizing a quadratic function subject to quadratic constraints. Although the control 
procedure involves substantial programming, the computation time involved is negligible 
in comparison with practical image-data transformations. 

3. 7.1 Diagonalization in the subspace 

This preliminary step simplifies the algebra. First, the base vectors eµ are normalized by 
scaling the model parameters and the metric tensor gµv is diagonalized. The algorithm can 
now be protected against linear dependence of the search directions. Such dependence 
shows up as one or more unusually small eigenvalues of gµv· Components of the model 
along the corresponding eigenvector(s) may reflect rounding errors rather than true 
structure, and such eigenvectors are discarded, reducing the subspace to that part spanned 
by eigenvectors having significant eigenvalues. 
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With the remaining eigenvectors rescaled to make the metric Cartesian, the distinction 
between covariant and contravariant indices disappears. Further simplification is effected 
by diagonalizing the revised form of Mµv to give 

S(x) = S0 + Sµxµ - ~XµXµ 

C(x) = C 0 + CµXµ + ~'Y(µ)XµXµ 

/ 2 = X µX µ 

(27) 

where the 'Y(µ) are the eigenvalues of Mµv, and all symbols are defined with respect to the 
new base vectors. 

Apart from the protection against linear dependence, the above procedure is merely the 
simultaneous diagonalization of gµv and Mµv· Much hangs on accurate diagonalization in 
the subspace (especially for badly conditioned problems), and it is essential to diagonalize 
accurately. This is a standard linear algebra problem in a space of low dimension, and reliable 
algorithms are available for this purpose. 

3. 7.2 Basic control 

The aim of the control procedure is to maximize S over C =Cairn subject to a distance 
constraint / 2 ,.:; 15(""' 0.1 "'£/to 0.5"'£!). Unfortunately, this may be impossible at first. For 
very many applications, C is a convex (elliptical) function of f, for which all eigenvalues 
'Y(µ) are positive. There is then a minimum value 

(28) 

- -which C can attain in the subspace. Clearly one should not attempt to aim below Cwin, 

regardless of the value of Cairn· In fact, even attempting to reach values as low as ~min 
is inappropri~te, since the resulting x is then determined purely by the structure of C and 
not at all by S. It is better to set the more modest aim 

which is always accessible. 
The various maxima of S over different values of C may be parameterized by the 

Lagrange multiplier a in 

- - -Q =as- c (30) 

(re-defining Q using a instead of A.). Maximizing Q yields 

(31) 

in which a is chosen to fit C =Cairn· The required range for a is the positive range 

G'.min < O'. < 00 (32) 

assigning positive weight to the entropy. G'.min is normally zero (for positive definite VVC), 

at which C takes its minimum value C~in· If, for non-positive VVC, any eigenvalues 'Y are 
negative, G'.min becomes max (- 'Y(µ)) at which the increment Xµ diverges. The upper limit 
a= 00 corresponds to unconstrained maximization of S irrespective of C. The value of C(x) 
increases monotonically in a, for a in the allowed range, so that a simple chop suffices to 
iterate a towards C = Cairn. 
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Maximum entropy image reconstruction 121 

Figure 2. Operation of a-chop in the subspace. The maximum-entropy trajectory, parameterized by a, is 
shown dashed. The circle centred on the current image f marks the maximum allowed dista.nce l 0 • Arrows 
indicate the direction induced by the chop. Results x are shown as filled circles •. (a) Unique iterate 
C =Cairn, l < 10 ; (b) Unique iterate C >Cairn, l = 10• (c) Ambiguous iterate C >Cairn, l = 10• (d) Too 
distant iterate C = C0 , l > 10• 

The resulting x may, however, be too large lo ,.,,satisfy the distance constraint. To protect 
against this, the chop in a is redirected towards C = C0 whenever a gives an increment with 
too large 12 . The rationale for this form of protection is that maximizing S over the existing 
value ~Co is likely to give a closer iterate than attempting to reach a different 
value Cairn· 

The a-chop normally behaves as in Figs 2a or 2b, and in any case it must always give a 
result in the range Cairn~ C ~ C 0 • Because the distance l is not monotonic in a, this can 
lead to an ambiguity in the result of the chop (Fig. 2c), the result produced depending on 
the particular values of a actually used in the chop. Nevertheless, the ambiguity is harmless 
in that either answer for x gives a useful iterate. More seriously, the algorithm may be unable 
to find any sufficiently close value of x (Fig. 2d), especially if the current image f is far from 
a maximum-entropy image. 

3. 7.3. Distance penalty 

If the a-chop cannot find a sufficiently close value of x, the distance constraint must be 
introduced explicitly into the maximization via a second Lagrange multiplier P, giving 

Q = as -c - Pl 2 ' p = distance penalty ~ 0. 

This is maximized at 

x µ = (aSµ - Cµ)/(P + 'Y(µ) +a). 

(33) 

(34) 

Thus P can be interpreted as an artificial increase of each eigenvalue 'Y(µ) of C, giving 
a revised form 

Cp(x) = C0 + Cµx µ + Yz(P + 'Y(µ)) x µX µ (35) 
~ ~ -

wh~h takes larger values than C itself. Cp is also more convex than C, and the maximization 
of S becomes better conditioned. 
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Enter with diagonalised 
models S, C 

p = 0 

Initialise a.: a.min< a. < 00 

Calculate xµ' C, Cp, R. 2 

YES ~--~---~ c > c p 0 

NO 

NO 
~--~---~ YES~-~-~ 

Chop a down 
towards Cl.min 

R,2 > t 2 
0 

NO 

Store successful x 

a chop finished 

YES 

a chop successful 

YES 

P = 0 or P chop finished 

YES 

Exit with latest 
successful x 

NO 

Chop a up 
towards oo 

NO~---~ 

Increase P 

NO~------, 

Decrease P 

Figure 3. Flow-chart of control procedure. 

There are several ways of proceeding from here: we suggest the following. With a 
distance penalty invoked, a is chopped towards C =Cairn as required, but the chop is 
redirected towards Cp = C0 whenever the distance is too large. Redirecting on Cp rather 
than on C helps the algorithm b~cause C itself is always less than Cp, and hence will make 
useful progress down towards Cairn. For sufficiently large penalty P, the a-chop must be 
able to reach a result satisfying 

- -
Cairn .;; C < Cp .;; Co (36) 

and the smallest such P is used to give the final result x. A flow-chart of this algorithm is 
shown in Fig. 3. 

All that remains is to increment f by the multiples x µ of the search directions, whilst 
protecting against stray non-positive values. The algorithm is complete. 

In general, the algorithm proceeds by reducing C at_ each iteration, whilst keeping close 
to the maximum of S for the_ current value of C, until Cairn is obtained. Then Sis increased, 
C necessarily remaining at Cairn' until it is sufficiently close to the maximum that the 
termination criterion of Section 4 is satisfied. 
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Plate 1. Million-pixel maximum entropy reconstruction of Cas A, computed by the algorithm 
presented in this paper. 

(facing page 122) 
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4 Discussion 

Our first conclusion is that it is operationally effective to subsume large numbers of 
individual constraints (such as positivity of each pixel and acceptable fits to experimental 
datasets) into single functions like S(f) and C(f). This enables practical algorithms to be 
developed for large problems. 

There are then four main ingredients in the maximum-entropy algorithm recommended 
in this paper. They are 

(1) The use of a subspace of search directions instead of merely using line searches, 
(2) Updating fully at each iteration, and not attempting to carry information forward, 

especially information on rapidly changing high derivatives, 
(3) The entropy metric, in which the entropy function itself is used to define distances, 
( 4) Controlling the algorithm directly on the constraint C, and not on its Lagrange 

multiplier A. 

These ideas may also find use in other non-linear maximization problems. The resulting 
program has proved highly robust and powerful. It supersedes earlier versions which have 
been used successfully in image enhancement (Bryan & Skilling 1980; Daniell & Gull 1980), 
gamma-ray astronomy (Skilling et al. 1979), medical tomography (Kemp 1980), and latterly 
in other fields too. For example, to deconvolve an optical image of the galaxy M87, the 
algorithm presented here took half the number of iterations of an earlier algorithm ( essen
tially that of Section 3 .4) using the same number of search directions (Bryan & Skilling 
1980; Bryan 1980). The saving in CPU time was not as great, since more sophisticated 
search directions, requiring more image-data transforms, are used here. The operation of 
the algorithm is always checked by displaying the value of 

1 I vs vc 
1

2 

TEST= l I VS I - I VC I (37) 

This measures the degree of non-parallelism between VS and VC, which is zero for a true 
maximum entropy image. Usually there is no difficulty in reaching TEST< 0.1 or so at 
the correct value of C, which demonstrates that the correct, unique maximum-entropy 
reconstruction has been attained. We think it important that programs purporting to 
produce maximum-entropy images should make this test of their operation. 

Fortran implementations of the algorithm routinely perform maximum-entropy calcula
tions on images up to a million pixels, and there seems no bar in principle to still larger sizes. 
An example is the 1024 x 1024 maximum-entropy image of the supernova remnant Cas A 
(Plate 1 ), reconstructed from Cambridge 5-km telescope observations at 5 GHz (Gull & 
Brown, reported in Skilling 1981 and Tuffs 1984): a conventional reconstruction from these 
data was given by Bell (1977). Almost regardless of size, the algorithm takes something like 
20 iterations to reconstruct an image from an experiment with signal-noise of about 100: 1. 
Each iteration of the recommended three search-direction version involves 6 image-data 
transformations, so that the maximum-entropy reconstruction is about 100 times slower 
than simple linear reconstructions. 
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