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Received 17 July 1992 

Abstract Tbe Morse oscillator. radial Coulomb and radial harmonic oscillalor problems 
can be solved exactly using a variety of algebraic methods. These problems correspond to 
different m l i l i o n s  of the so(2 , l )  algebra and a comparison of the generators of the 
algebra may be used to identify mappings between each pair of systems. The resultant 
transilion operators  act^ as ladder, or energy changing, operalors in the cases of the 
Coulomb and harmonic oscillator potentials, whereas they act as shift operators, acting 
at constant energy, in the case of the Morse potential. This is a consequence of the 
sa@, 1) dynamical symmetly, whereby the Morse Hamiltonian is expressible solely in 
lerms of the Casimir operator of the algebra. An alternative algebraic approach, the use 
of the method of supersymmetric quantum mechanics, or factorization, produces in each 
case a set of shift operators. Relations between the various ladder and shift operators may 
be identified by means of the appropriale mappings, and these results can be generalized 
so as to relate the one dimensional Morse oscillator to the radial Coulomb and radial 
harmonic oscillator potentials involving an arbitrary number of angular dimensions. 

1. Introduction 

The application oC algebraic methods to quantum mechanical problems has seen 
rapid expansion in recent year?.. The Cactorization method (Schrbdinger 1940, 
Meld and Hull 1951) has received renewed attention following the development 
of supersymmetric quantum mechanics (Winen 1981, Sukumar 1985), and it has been 
demonstrated that the two approaches are indeed equivalent (Alves and Drigho Filho 
1988, Montemayor and Salem 1989). Systems displaying dynamical symmetry can also 
be treated with algebraic techniques (h ima  and Iachello 1974, Perelomov 1985) and 
the potential group approach has been applied (Alhassid el al 1983, Wu and Alhassid 
1990, Englefield and Quesne 1991) to the case of the Morse potential, thereby 
relating states of the same energy but belonging to different potential strengths (Le 
corresponding to displaced Morse potentials). This is also related to the concept 
of shape invariance (Gendenshtein 1983), and it has been demonstrated (Alves and 
Drigho Fdho 1988) that the set of shape invariant potentials is essentially the same 
as that obtained by the factorization approach. 

We shall consider here three important exactly solvable potentials, namely the 
radial Coulomb, Morse oscillator and radial harmonic oscillator potentials, which have 
been the subject of considerable interest in the development of algebraic methods 
to exactly solvable problems. These problems have been shown to correspond to 
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1602 I L Cooper 

different realizations of so(2, l )  symmetry (&ek and Paldus 1977, Berrondo and 
Palma 1980, Wu and Alhassid 1990) and have all been treated by the methods of 
factorization or supersymmetric quantum mechanics (Haymaker and Rau 1986, Dutt 
et a1 1987, Ding 1987, Drigho Filho 1988). In the present paper, these algebraic 
methods will be applied to the above three solvable potentials within the context 
of a common framework in order to construct the set of transition operators which 
connect adjacent energy eigenstates, and the common so(2, l )  symmetry will be 
exploited to generate explicit mappings between the transition operators for each 
pair of potentials. Operators connecting states of the same energy will be termed 
shift operators to distinguish them from ladder operators connecting states of different 
energy. These ladder and shift operators are of considerable value in the algebraic 
determination of matrix elements involving exact eigenstates. The set of ladder 
and shift operators for the Coulomb problem will be shown to be derivable from 
a combination of so(2,l)  symmetry and the method of supersymmetric quantum 
mechanics, in contrast to the Morse potential, for which the two approaches lead to 
the same set of shift operators connecting Morse potentials displaced in both well 
depth and equilibrium position. This can be traced to the different structures of the 
two problems (Wehrhahn and Cooper 1992), in particular to the dynamical symmetry 
of the Morse problem whereby the Hamiltonian is related to the Casimir of the 
algebra. In the case of the radial harmonic oscillator, application of so(2,l)  symmetry 
generates ladder operators at a constant value of angular momentum quantum 
number, whereas application of the method of supersymmetric quantum mechanics 
leads to shift operators between eigenstates which are forced into degeneracy through 
displacements in the zero of energy. Such displacements are permissible in this 
particular problem since there is no dissasociation or ionization limit to act as a 
constraint. Ladder operators for the Morse oscillator and true (constant energy) shift 
operators for the radial harmonic oscillator can be generated from the Coulomb shift 
operators by the use of the appropriate mappings. 

The plan of the current paper is as follows. In the next section, we discuss a 
unified algebraic approach to bound states of the thrce problems based on so(2,l) 
symmetry. The relevant transition operators are identified, together with mappings 
between the bound states of each pair of problems. The following section discusses 
each problem from the point of view of supersymmeny or factorization, and various 
connections between the resultant shift operators and the transition operators arising 
from so(2,l)  symmetry are identified. The mappings between each pair of problems 
are then used to generate the remaining ladder and shift operators in each case 
and the inter-relations are displayed explicitly. Generalization of these results to an 
arbitrary number of angular dimensions in the case of the Coulomb and harmonic 
oscillator problems are then straightforward. The paper ends with some concluding 
remark. 

2. so(2, l )  algebraic treatment 

Algebraic approaches to the Coulomb problem are well established (see, for example, 
Englefield 1972) as are those for the Morse oscillator (Huffaker and Dwivedi 1975, 
Berrondo and F’alma 1980). Here, we shall present a simple unified approach to 
the radial Coulomb, Morse oscillator and radial harmonic oscillate: problems using 
so(2, l )  symmetry, following the treatment of ?iek and Paldus (CfZek and Paldus 
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1977, Berrondo and Palma 1980). This particular approach, which was developed 
for bound state problems, demonstrates that the above three systems correspond to 
different realizations of the algebra so(2,l) .  Although the method can be shown to 
generate the eigenvalue spectrum directly, we shall assume for convenience that the 
eigenvalues are known in each case. 

21. Coulomb problem 

In atomic units, the radial Schrodinger equation for a one electron atom with nuclear 
charge Z becomes 

where I is the angular momentum quantum number, n( = v + 1 + 1) is the principal 
quantum number, and v (used in preference to np  in order to facilitate comparisons 
among the various systems) is a quantum number which denotes the number of radial 
nodes. 

We introduce the ndependent variable p by the relation 

and equation (2.1), after multiplication by p and rearrangement, gives 

We now define the operators 

w, = p 

with commutator 

[ w,, W,] = 2p - d = 2iWZ 
dp 

where W, is given by 

. d  w, = -1p- 
dp  

The set of operators 

Tl = ;( w, - W,) 

T3=f(W3$W1) 
TZ = W, 

(2.3) 
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have commutation relations characteristic of the algebra so(2,l)  (Englefield 1972, 
Wybourne 1974) 

Equation (22) then becomes an eigenvalue equation for T3, with eigenvalue n, 
namely 

T&"J = n@,4 = (. t 1 + W " J .  

C, = T' - T: - T: = W1 W, - W2( W, + i) = I (  1 + 1) 

W",f = l ( l +  WVJ. 

(2 10) 

The Casimir operator of the algebra so(2,l) is given by 

(2.11) 

so that 

(2 12) 

Since the eigenvalues of the Casimir operator of the algebra are characterized by the 
value of the angular momentum quantum number, the irreducible representations are 
characterized by 1. From equation (2.10) we note that the eigenvalues of the Casimir, 
T3, of the subalgebra so(2) correspond to the principal quantum number and hence 
determine the energy. 

We may construct transition operators by the presecnption 

T , = T l f i T , =  $(W3-W,)&i\v2.  (2.13) 

Hence 

Provided that the operators T* are assumed to act on eigenstate 
n = v + I + 1, then equation (2.14), in conjunction with equation (2.3), becomes 

with 

(2.15) 
d 

T * = i p - - p + n .  
d P  

Note that the operators depend both explicitly and implicitly (via p = Zr/n)  on the 
value of n and act on an eigenstate which is characterized by this value of n. 

From the commutation relations (2.9), we find 

T3T* = T*(T3 i 1) (2.16) 

so that 
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and the constants of proportionality may be determined as Thus T*$*,, a 
follows: 

Since 

T*T, T3(T3 1) - c, = [n(n=F 1) - l(1 t l)] (218) 

we have 

T+T-+',,r - - In(. - 1) - K 1  t wu,, (2.19) 

so that, choosing a phase factor of unity 

(220) 112 T-&,i = [n(. - 1) - I ( 1  t 111 A-IJ. 
Similarly, from the relation 

T-T++,,, = I.(. + 1) - 1(1 t l)l@v.i (221) 

we have 

T+&J = [n(n t 1) - 1 ( 1 +  l)lllz+"t,,l. (222) 

These represent ladder operators for the Coulomb problem, changing the energy 
within an irreducible representation of so(2,l)  ie at constant value of 1. However, 
care must be taken with respect to the dependence on p. Specifically, these operators 
convert a function of p = Z r / n  into a function of p = Zr/ (n  f 1). Also, since 
we are dealing with radial wavefunctions, the correctly normalized wavefunctions 
should be multiplied by the radial coordinate r, which has to be converted to the 
ndependent coordinate p. This requires that we multiply +n,i by n/Z, and 
by (n ?C l) /Z, noting that the term in Z will cancel out. Hence, denoting these 
Coulomb kidder operators by L,, we have 

such that 

(2.24) 
n f l  

where n = U t 1 + 1. Note that L- 0 as required, and this result may be used 
to derive the ground-state eigenfunctions for specified values of 1 by solution of the 
corresponding first order differential equations. 

22. Radial harmonic arcillator 

The radial Schrodinger equation for the harmonic cacillator is 
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where fi  is the reduced mass and w is the angular vibrational frequency of the 
wcillator, 1 is the angular momentum quantum number and v is the vibrational 
quantum number. llansforming to the dimensionless variable = r/a where 
a = (ii/fiw)'" a110ws us to rewrite equation ( 2 . ~ )  as 

Following the procedure in subsection 21 above, we define the generators 

w - ' 2  
1 - y E  

with the commutator 

where 

(2.29) 

(2.30) 

Defining the operators Ti ( i  = 1,2,3) as in equation (2.8) with commutation relations 
given in equation (2.9), yields, in this case, for the operators T3 and C, the relations 

(2.31) T3+v,I = @ u t  1 t 3/2)+v,1 

and 

CZ+~,I = (Tj - - 'G)+,,,r = a[l(l+ 1) - 3/41@,,1. (2.32) 

As in the Coulomb case, the Casimir operator of the algebra so(2,I) determines the 
angular momentum quantum number and the Casimir operator of the sub-algebra 
so(2) determines the energy of the oscillator. In this case, the ransition operators 
Ti have the form, when operating on state 

where we have dropped a term which is annihilated when operating on the state 
Since the commutation relations are unchanged we still have 

T,T*=T3(T3k1)-C,  (2.34) 

(2.35) 
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The effect of T3 and C2 in the present instance are given by equations (2.31) and 
(2.32) respectively. 

Thus, as in the Coulomb case, we generate ladder operators L, which act to 
change the energy at constant value of the angular momentum quantum number. 
Explicitly, these ladder operators have the form 

L, = - it- i - - p + 2 v  + 1 + x :€ 2 ’> (2.36) 

such that, from equations (231) and (2.32) 

L+$,,J = 1 / 2 [ ( 2 ~  + 1 + 3/2)(2v + 1 + 3/2 f 2) - 1 ( 1 +  1) + 3/4]1’z+v*1,~. (2.37) 

Note that, as in the Coulomb case, the precise form of these ladder operators depends 
on the precise eigenstate upon which they act. 

23. Morse oscillator 

We now consider the so(2, l )  algebraic approach to the Morse oscillator (Berrondo 
and Palma 1980). The Morse Hamiltonian B given by 

(2.38) 

where De is the well depth, p is the reduced mass, R, is the equilibrium separation 
and CY is the range parameter. Pansforming to the dimensionless variable y = 
cu(R-Re) and defining the well depth parameter X via the relation X2 = 2pD,/aZhZ, 
we obtain the reduced Hamiltonian (in units of a2h2/2p) 

2 1-e-Y)2-XZ, (239) 
d2 H = - - + A (  

dY2 

The eigenvalues of this Hamiltonian are well !mown (Morse 192.9) 

E, = -( X - U - 1/2)’ (2.40) 

where U,  the vibrational quantum number, takes the values v = 0,1,2,. . . , umlX with 
vmar = Int(X - 1/2), such that the number of bound vibrational levels is equal to Int 
( A  + 1/2) at specified value of well depth parameter A. Using the above eigenvalue 
expression, we can rewrite the Schrodinger equation for the Morse oscillator in the 
form 

(241) -ey- dz + ( A  - U - 1/21 2 e y  + ~ z e - ~ ]  = ~ X Z + , , ~ .  
dyZ 

If we now define a new variable z according to the prescription 

or x = y - In X (242) e-= = Xe-Y 

then equation (2.41) takes the form 

(2.43) 
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Following the procedures described previously for the radial Coulomb and radial 
harmonic oscillator problems, we define the operators 

W, = e-" (244) 

(2.45) dz 2 W, = -e5- + ( A  - U - 1/2) e' dxz 

with the commutator 

where 

Again introducing the operators Ti (i = 1,2,3) as in equation (2.8), with 
commutators given by equation (2.9), equation (2.43) becomes 

T3$",A = h L , A  (2.48) 

whereas, from the Casimir C,(= 2': - T: - T:) of the algebra, we have 

C2+,,,x = ( ( A  - - 1/2)'- 1/4)+0,x = (-Ew - 1/4)+,,,~. (2.49) 

Hcncc, for the Morse potential, the eigenvalues of the operator T3 represent well 
depth parameters which can vary by integer amounts, while the eigenvalue of the 
Casimir of the algebra so(2,l)  determine the energy. Hence so(2,l)  representations 
correspond to Morse potentials at constant energy and this forms the basis of the 
so-called potential group approach to the Morse oscillator (Wu and Alhassid 1990, 
Englefield and Quesne 1991). Note that the present approach does not require 
the introduction of an additional (angular) variable. In addition, in contrast to the 
Coulomb case, in which the variable p is dependent upon the quantum number n 
(and hence the energy) through the scaling p = Z r / n ,  and acts as a space dilation 
operator, here the scaling involves the well depth parameter A, which acts to displace 
the equilibrium position of the Morse potential via equation (2.42). 

In thc present case, when acting on the eigenstate $v,A, the transition operators 
T* have the form 

where we have cancelled a term which vanishes identically under such circumstances. 
In addition, we have 

T3T*+",x = T*(T3 f l ) + " , A  = ( A *  1)T*@,,A. (2.51) 
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Since the eigenvalues of T3 are displaced by unit steps, and since constant energy 
implies a constant value of X - v,  we must have 

Furthermore 

T,T* = T3(T3 rt1) - C, = X ( X *  1) - ( A  - v)(X- v - 1). (2.53) 

Thus these operators act as shif operators for the Morse potential, acting to change 
the well depth parameter while conserving the energy. From equation (2.42), we note 
that the variable I also depends on the well depth parameter A, so that we have 
generated a sequence of Morse oscillator potentials, displaced in both well depth 
and equilibrium separation. This will be discussed in more detail when considering 
supersymmetry and shape invariance for the Morse oscillator potential. 

In summary, we have generated for the Morse potential shift operators which 
connect states of displaced Morse oscillators, with differing numbers of bound states 
and different equilibrium separations, at constant d u e  of the energy. This is in 
contrast to the radial Coulomb and harmonic oscillator problems, where the operators 
act as ladder operators, changing the energy. This difference may be attributed to the 
fact that the Casimir of the algebra so(2,l)  for the Morse potential depends on the 
energy eigenvalue, and so is directly related to the Hamiltonian in this case. Hence 
we have generated the shift operators S, defined by 

(2.54) 

such that 

3. Mappings between systems 

It has long been known that the systems discussed above are connected, at least 
in a painvise manner, and this is usually demonstrated by means of a similarity 
transformation on the relevant Schrodinger equation. In particular, the Morse 
oscillator has been related to the radial Coulomb problem (Morse 1929) and also 
to the two dimensional harmonic oscillator (Montemayor and Urrutia 1983) although 
it does not appear to have been explicitly related to the radial harmonic oscillator. 

This section is designed to demonstrate the close relationship of these problems, 
within a common bamework, and it will be demonstrated in a later section that these 
mappings can be extended to cover the radial Coulomb and radial harmonic oscillator 
problems in an arbitrary number of angular dimensions. We shall provide here an 
approach to mappings between each pair of systems which is based on the so(2, l )  
realizations presented in section 2 Although we shall consider the mappings in a 
single direction only, it is obvious that the mappings are indeed reversible. We shall 
consider each pair in turn. 
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3.1. Coulomb-hamionic oscillator mapping 

From the definitions of W, given in equations (2.4) and (2.27), we obtain the mapping 

P - ; E a  ( 3 4  

from which equation (2.7) becomes 

Comparison with equation (230) shows that a similarity transformation of the form 
E"W2E-" is required, implying Q = -f .  Hence we apply the mapping (with 
accompanying similarity transformation) 

Note that the transformed operators 

Ti = p T ; p  

(3.3) 

(3.4) 

have precisely the same commutation relations as the Tj themselves. 

permits the identification 
A comparison of the eigenvalues of the operator T3 in equations (210) and (231) 

n E U 4- 1 t 1 - (2u t 1 t 3/2)/2 (3.5) 

so that we have 

1 - Q - i  2 4 '  (3.6) 

It is then a straightfoward matter to confirm that the eigenvalues of the Casimir 
operator map consistently from l ( 1  i- 1) to $[1(1  + 1) - a ]  as required. With the 
above change in 1 value, eigenstates of the radial Coulomb problem are mapped 
systematically on to those of the radial harmonic oscillator. 

Finally, the transition operators T*, given by equation (215), become, followhg 
the above identifications and the appropriate similarity transformation 

as required by equation (2.33). 

3.2. Radial harmonic oscillalor-Morse oscillator mapping 

In this case, from a comparison of equations (2.27) and (244) for \VI, we have 

it2 -+ e-= (3.8) 

and application of this mapping to equation (2.30) for W2 yields 
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As in subsecion 3.1 above, by comparison of equations (2.47) and (3.9), we require a 
similarity transformation, which in this case is easily Seen to give 

(3.10) 

From a comparison of the eigenvalues of T., given in equations (2.31) and (2.48), we 
have 

v + $ +  ; - A 

or, equivalently 

$l-. .-+ A -  zi- 3 (3.11) 

where we note that 1 = constant is transformed into X - ti = constant, which implies 
constant energy in the case of the Morse oscillator (see equation (2.40)). It is a 
straightforward matter to confirm the mapping of the Casimir operator C2 (from 
equation (2.32)) 

c2 = (i1- :) ($ + ;) - ( A  - .)(A - v - 1) (3.12) 

as required by equation (2.49). Thus the eigenstates of the radial harmonic oscillator 
are systematically mapped on to degenerate eigenstates of a sequence of displaced 
Morse oscillators, with each value of 1 mapping on to a particular energy level of the 
sequence of Morse oscillators. 

Finally, we can confirm from equations (2.33) and (2.50) that the transition 
operators T+ (given by equation (233)) are transformed correctly as follows: 

using the appropriate similarity transformation, in agreement with equation (2.50). 

3.3. Radial Coulomb-Morse oscillator mapping 

In this case, from a comparison of equations (2.4) and (2.44) for W,, we have 

p --+ e-= (3.14) 

from which equation (2.7) for W, transforms as 

. d  . d  
dp dx 

w, = -1p- 3 1- (3.15) 

Comparison with equation (2.47) shows that we require here the similarity 
transformation 

(3.16) 
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From equations (2.10) and (2.48) for T3, we have 

n = u + L + l - X  

or, equivalently 

I + X - v - 1  (3.17) 

from which we can verify the relation 

c, = 1(1+  1) - ( A  - 21 - 1)(X - v) (3.18) 

in accordance with equations (212) and (2.49). 

transformation) 
For the transition operators, T*, we have the mapping (including similarity 

(3.19) 

as required from equations (2.15) and (2.50). Note again that constant 1 is mapped 
on to constant X - v, which corresponds to constant energy in the case of the Morse 
oscillator. So we can systematically map the set of Coulomb eigenstates, for each value 
of the 1 quantum number, on to the set of degenerate eigenstates of a sequence of 
displaced Morse oscillators. 

We have demonstrated that the various problems may be transformed into each 
other by a simple change of variable and accompanying similarity transformation, 
where the appropriate mappings may be easily identified from the common so(& 1) 
algebraic formulation. In addition, the energy levels of each of the three problems 
can be sytematically mapped on to energy levels of the other MO, provided that the 
Morse oscillator is generalized to encompass a set of displaced Morse oscillators, 
with well depth parameter shifted by unit steps, thereby changing the number of 
bound levels by one unit. This pattern is precisely that found in supersymmetric 
quantum mechanical treatments of the Morse oscillator (Sukumar 1985), where the 
supersymmetric partner potential to a given Morse oscillator has the same set of 
energy eigenvalues except that the ground level of the parent is absent. This will be 
discussed further in the next section. 

4. Supersymmetric quantum mechanical treatment 

In this section, we provide an alternative algebraic approach to the three problems, 
which serves to highlight further the close connection between them. We employ the 
method of supersymmetric quantum mechanics (Witten 1981, Sukumar 1985), which 
is equivalent (Alves and Dngho Filho 1988, Montemayor and Salem 1989) to the 
earlier factorization approach of Schrodinger (1940). Although some of the results 
discussed below are known, we shall present a summary here in order to connect with 
the so (2 , l )  algebraic approach discussed in section 2 
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4.1. Radial Coulomb problem 

In contrast to our earlier discussion of so(2,I)  symmetry, we shall use the unscaled 
coordinate r, whereby the radial Schrodinger equation for the Coulomb problem has 
the form 

As before, U is the quantum number identifying the number of radial nodes. 
We can factorize (4.1) in the form 

a t m ( W " , i  = 2AE,,f+",f 

where the ladder operators a(1) and a t ( l )  are given by 

d ( l t l )  z a ( l )  = - - - t-  
I t 1  d r  r 

and 

d ( l t 1 )  Z t -. 
d r  r I t 1  

a t ( l )  = -- - - (4.4) 

The energy expression A E , , ,  is given by 

t ) (4.5) 
1 

AE,,,, = E",{ - Eo,, = 2' 

and refers to the excitation energy from the ground level corresponding to a particular 
1 d u e .  We have assumed in the above that the energy eigenvalues are known, but it 
is a straightforward matter to determine these eigenvalues directly from the assumed 
factorization of the Hamiltonian. 

The above operators can be shown to change the angular momentum quantum 
number at constant energy, thereby behaving as shift operators rather than ladder 
operators (Haymaker and Rau 1986, Ding 1987, Valance and Morgan 1990). The 
partner Hamiltonian a(l)at(l) can be expressed in the form 

d2 ( l+1) (1+2)  2 2  2' 
U ( l ) U t ( l )  = -- t _ -  t- 

dr2 r2 ( I +  o2 
E a t ( l +  l ) a ( l +  1) + 2AE,,i. ( 4 4  

The partner Hamiltonian corresponds to an increase in 1 quantum number of one 
unit, and has the Same eigenvalue spectrum as the parent Hamiltonian except that 
the ground level of the parent potential is absent. 

The action of the shift operators is as follows, where we assume normalized 
wavefunctions 
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Note that at(1) does not act on 
which is +v- l , , t l .  The operator which acts on 
nodes is a t ( l -  l) ,  given by 

but on rhe result of operating on +,,, with a ( l ) ,  
to increase the number of radial 

such that 

(4.10) 

In contrast to the so(2, 1) algebraic approach, the supersymmetric approach generates 
operators which transform degenerate states of the Coulomb problem into each other. 

We summarize the results for the Coulomb shift operators as follows: 

d 1  
s+*",, (-- d r  - - r 

4.2. Radial isotropic oscillator 

In this case, the radial Schrodinger equation for the isotropic oscillator is (in reduced 
units) 

dz + 10 + €2  - 2E,,, +",I = 0 
[-@ EZ 1 (4.13) 

where v is the vibrational quantum number, 1 is the angular momentum quantum 
number, and the energy eigenvalues are given by 

Ev,l  = 2v t 1 t 5 .  (4.14) 

Note that degeneracies involve eigenstates corresponding to either even or odd values 
of 1 in this case, the two sets being essentially disjoint 

We can factorize (4.13) in the form 

a+(l)a(l)*u.l = 2AE,,l+",l (4.15) 

where AE, , ,  = - E,,( and where the shift operators have the form 

(4.16) 

and 

(4.17) 
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The partner potential a( l )a t ( l )  then becomes 

= a t ( l + l ) a ( l + 1 ) + 2 ( 2 ) ~ a t ( l + l ) a ( l f 1 ) $ 2 A E l , l .  (4.18) 

Thus the parmer potential corresponds to an increase in 1 of one unit and has the 
same energy spectrum as the parent except for the absence of the lowest level. 
Although this situation appears to be qualitatively the same as in the Coulomb 
case we note that the energy spectrum of the partner, with 1 increased by one 
unit, has been shifted upwards by one unit to achieve the degeneracy required by 
supersymmeay. As we move from 1 = 0 to higher values of 1 via supersymmetry, the 
various energy level spectra are shifted upwards by 1 units for the partner labelled by 
angular momentum quantum number 1. This is possible since the energy zero is not 
coupled to a dissociation limit in the present case. 

From equations (4.15), (4.16) and (4.17), we can deduce the shift operator 
relations (assuming normalized eigenstates) 

(4.19) 

or, equivalently 

(4.21) 

Note that these are actually quasi-shift operators, which act to change the 1 quantum 
number by &l, but also change the energy. The method of supersymmetric quantum 
mechanics offers no direct mute to the determination of proper shift operators which 
should act at mwtant energy to change the 1 quantum number by f2. If we denote 
the above quasi-shift operators by V, ,  their effect on normalized eigenstates is as 
follows: 

4.3. Morse oscillator 

It will be convenient here to use directly the Morse variable y as introduced in section 
2. The Morse Schrodinger equation has the form 

(4.24) 
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where the energy eigenvalues are E",, = - ( A  - 'U - 1/2)'. 
equation in the form 

We factorize this 

d 1 .(A) = - + A ( 1 -  e-) - - 
dY 2 

The partner Hamiltonian a(A)at(A) is expressible in the form 

or, equivalently, as 

a ( A ) a t ( A )  = ( a ' ( A )  - I)(a(A) - 1) + AE,,, 

We note that the partner Hamiltonian corresponds to a displaced Morse oscillator 
corresponding to a unit shift in well depth parameter, and also to a shift in 
the equilibrium position of the oscillator. We note from equation (4.24) that 
the energy spectrum of the Morse oscillator is independent of the position of 
equilibrium. This is a particularly striking example of so-called shape invariance, 
as defined by Gendenshtein (1983), whereby the partner potentials are related to 
the parent by changes in certain parameters. A recent analysis of the concept of 
supersymmetry shape invariance in relation to solvability (Montemayor and Salem 
1989) has demonstrated that its domain of application is precisely the same as that 
of the factorization method. 

The operators a( A) and at( A )  are shift operators, acting at constant energy. For 
normalized eigenstates, we have 

or, equivalently 

(4.30) 

(4.31) 

(J(N + W " , A  = J ~ E " t l , A + l @ ' , t I , X + l .  (4.32) 

The simple relationship between the shift operators for displaced Morse potentials 
has been exploited previously (Cooper 1992) in a treatment of annihilation operator 
coherent states of the Morse oscillator, whereby the ground-states of the various 
partner potentials are eigenstates of the operator a( A )  with unit eigenvalues. This 
follows from the result a(A)  - .(A) - 1 as A - A - 1. 
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If we now rewrite these equations in terms of the variable 2 introduced in the 
so (2 , l )  algebraic approach in section 2, we have 

d 1 
dx 2 -  

a ( A ) = - - e - 5 + A - - = S -  

d 1 
X 2 -  a + ( ~ )  t 1 = -d --e-" + A +  - = s,. 

(4.33) 

(4.34) 

In addition, we have 

= [ A ( A  - 1) - ( A  - v)(A - v -  l ) ] * / Z  (4.35) 

= [ A ( A t 1 ) - ( A - u ) ( A - v - l ) ] ' ~ ~ .  (4.36) 

We observe that the shift operators S, and S-, defined by equations (4.33) and 
(4.34) with their action given in equations (4.35) and (4.36), are indeed identical to 
those generated by the so (2 , l )  algebraic approach, as given in equations (2.54) and 
(2.55). 

5. Additional ladder and shift operators via mappings 

In the case of the Coulomb problem, we have demonstrated that a combination 
of the so(2, 1) algebraic approach and that of supersymmetric quantum mechanics 
yield ladder and shift operators respectively. In the case of the radial isotropic 
oscillator, ladder operators are generated in the so(2,l) algebraic approach whereas 
the operators generated by supersymmetry change both the 1 quantum number (by 
&I) and the energy. In the case of the Morse potential, the two approaches generate 
an equivalent set of shift operators. In this section, we will demonstrate that by use 
of the mappings identified in section 3, we can generate ladder operators for the 
Morse potential as well as true shift operators for the radial isotropic oscillator from 
the shift operators corresponding to the Coulomb potential. 

5.1. Coulomb shqt operators - oscillator shqt operators 

Here, as shown in section 3, we have the following mappings: 

which gives the relations 

Also 
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so that 

(5.4) 1-11-1 
2 4 '  

We note from equations (5.2) and (5.3) the further result 

z --* ( Y  t $1 t 9 1 2 .  (5.5) 

By use of the appropriate similarity transformation (equation (3.4)) the Coulomb shift 
operators (equations (4.11) and (4.12)) transform as 

- 5  E d E - F + l t - ]  4v T 21 t 3 

where we have performed the similarity transformation with respect to the original 
variable prior to converting to the new variable. The constants of proportionaliw are 
given by 

and 

(5.9) 

The above results take no account of any changes due to normalization. We shall 
start from normalized ascillator wavefunctions and convert to Coulomb expectation 
values to see how normalized Coulomb wavefunctions should be modifed to yield 
normalized Wcillator wavefuntions. Since v = cz ,  then de = (r-'/'/Z)dr. Also, 
from the similarity transformation 4 = r-'I4$ we have qz = r-'/*$ so that 

(5.10) 

where the transformed (oscillator) wavefunctions are represented as 6. Note that 
radial eigenstates are involved in equation (5.10). 

Since we are dealing with exact eigenstates, we can use the Hellmann-Feynman 
theorem (Hellmann 1937, Feynman 1939) in the form 

(5.11) 



An integrated approach to ladder and shifi operators 1619 

= -Z2/2n2. The shift operators act at constant n, so this result indicates since 
that there is no further contribution from a change in normalization in this case. 

Hence the relevant mcillator shift operators become 

where S, are given by equations (5.6) and (5.7) respectiveiy. The I quantum number 
of the oscillator changes by f 2  when the 1 quantum number of the Coulomb system 
chages by 51, as a result of equation (5.4). Thus the Coulomb shift operators 
arising from supersymmetry may be mapped on to oscillator shift operators, which 
are not obtainable directly either hy the use of so(2,l) symmetry or by the method 
of supersymmetric quantum mechanics. 

5.2. Coulomb shift operators + Morse ladder operators 

Here, we shall use the Coulomb shift operators to generate ladder operators for a 
single Morse oscillator. The shift operators derived above connect degenerate states 
of displaced Morse oscillators. In the present case, we have (equation (3.14)) the 
mapping p Zr/n - Ae-y so that 

T -+e-Y and Z/n - A (5.14) 

Since n = v + l +  1 + A, then 

1 - A - U - 1  (5.15) 

and, for consistency, using equation (5.14), we must also have 

z i AZ. (5.16) 

Using the appropriate similarity transformation (equation (3.16)), the Coulomb shift 
operators (equations (4.11) and (4.12)) transform as 

L-  (5.17) - -eY- - ( A  - w - l/2)eY + - - d A 2  

du A - U  

L,. (5.18) A2 
( A  - w - 1/2)eY + ----teY-- d 

dy A - U - 1  

In this case, we also have 

(5.19) 

[(U + 1)(2A - w - 1)]’/2. (5.20) A 
JZZZ7-T A - V - 1  
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In order to account for any change arising from normalization, we follow the same 
procedure as in subsection 5.1 above, to find 

(5.21) 

If we write L = l(1 f l), we can again apply the Hellmann-Feynman theorem, giving 

(5.22) 

Since the Coulomb shift operators act at constant n, the only term of relevance is 
the one depending on E ,  so that we need to incorporate (21 f 1)lJ2 into to 
effect the necessary normalization, requiring a compensatoly factor of (21 f 1)-'l2 
in Hence, the Morse ladder operators L, act on normalized Morse eigenstates 
as follows 

(5.22) 

These ladder operators have been obtained previously from the factorization 
method (Huffaker and Dwivedi 1975), via transformation from the Coulomb problem, 
but the present approach is more direct and shows explicitly the origin of the various 
factors which appear in the final expressions. It is obvious that we could derive 
these ladder operators from the radial isotropic oscillator, starting from the true 
oscillator shift operators derived in subsection 5.1 above, by a similar treatment. It is 
worth noting that the relation between the two-dimensional harmonic oscillator and 
the Morse oscillator has also been used previously (Montemayor and Urrutia 1983, 
Berrondo et a1 1987) to generate Morse ladder operators. We shall demonstrate in 
the next section that the one-dimensional Morse oscillator can be related to the radial 
Coulomb and radial harmonic oscillators in an arbitrary number of angular variables. 

6. Generalization to D dimensions 

We shall now consider a generalization of the above results to encompass radial 
Coulomb and radial harmonic oscillator potentials in an arbitrary number of angular 
dimensions. The topic of the D (or N )  dimensional Schrodinger equation, in the 
context of large N expansions, has been reviewed recently (Chatterjee 1990) and we 
shall only consider here those results of direct relevance. Rr a particle moving in 
a sphcrically symmetric potential in D dimensions, the radial equation has the form 
(Louck 1960) 
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where V ( r )  will correspond here to the Coulomb or harmonic oscillator potentials. 
If we perform a similarity transformation to reduce this equation to Schrodinger form 
by removing the term in d ld r ,  we find 

where q,,?, = r(D-l)/z$u,,. The centrifugal term reduces to 1 ( 1 +  1)/r2 in the case 
D = 3, as required. 

If we define the quantity 

(D - 3) A = l +  

then equation (6.2) can be written in the simple form 

such that the effective radial Schrodinger equation for dimension D has precisely 
the'same form as for dimension D = 3, with the replacement of 1 by A, with A 
given by equation (6.3). The energy eigenvalues for the Coulomb and harmonic 
oscillator systems in D dimensions may be written down directly by comparison with 
the three-dimensional case. 

We shall use this result to generalize the various mappings discussed in the 
earlier sections. The application of so(2,I) algebra (&lek and Paldus 1977) and 
the application of the methods of supersymmetric quantum mechanics (Alves and 
Drigo Elho 1988) to the Coulomb and oscillator problems have both included this 
generalization, but not in the context of relations between the systems themselves. 
We shall consider here in addition the relation between these generalized problems 
and the one dimensional Morse oscillator potential, by means of generalizations to 
the mappings discussed previously. Since the resultant generalizations are provided 
by the replacement of 1 by A, as given by equation (6.3), only a summary of the 
results will be provided here, since the derivations are equivalent to those discussed 
in earlier sections. 

6.1. Radial Coulomb problem 

Following equations (2.23) and (2.24), the generalized Coulomb ladder operators act 
on normalized eigenstates as 

(6.5) 
where n = w t A + 1 3 w t 1 + 1 f (D - 3)/2. Following equations (4.1 1) and (4.12), 
the generalized Coulomb shift operators act on normalized eigentates as 

where E*,, = - Z 2 / 2 ( w  + A + 1)' and A E , , ,  = E",, - E",,. 
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62 Radial harmonic mcillaror problem 

Following equations (2.36) and (2.37), the generalized oscillator ladder operators act 
on normalized eigenstates as 

'> 
1 d 1  

L+$,,A 2 ?(*Ez -I 2 - F2 + 27~ + A + 5 = ITS(T3 t 1) - c ' 2 ] " 2 ~ v * 1 , A  (6.8) 

where 

T3 = i(2v + A + 3/2) 

C, = $[A(A + 1) - 3/41 
and 

with A = I + (D - 3)/2. 

change the representation and also the energy, are generalized as follows: 
The quasi-shift operators, given by equations (4.22) and (4.23), which act to 

where 

follows: 

= 2v + A + 3/2 in this case. 
From section 5.1, the Coulomb shift operators themselves are generalized as 

-- - [.(U + A + 3/211'2$v-1,*t2 (6.11) 
2A + 3 

(6.12) 

We note in addition that the above results are valid for the Coulomb and harmonic 
oscillator systems in any number of angular dimensions, and the various mappings 
discused in section 3 are also applicable to these generalized systems, with the 
replacement of 1 by A. Specifically, the one dimensional Morse oscillator may be 
mapped on to the radial Coulomb and oscillator problems in any number of angular 
dimensions, and vice versa. 

2 
212 - 1 - -- [(U+ l ) ( V  f A f 1/2]1'Z'+!'v+l,A-2~ 

7. Conclusions 

We have demonstrated that three of the well known exactly solvable potentials 
coorespond to diferent realizations of the algebra so(2, l ) ,  and that a comparison of 
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the generators of the algebra may be used to identify mappings between each pair of 
systems. The so(2,l) transition operators act as ladder, or energy changing operators, 
in the case of the Coulomb and harmonic oscillator systems, and as shift operators, 
acting at constant energy, in the case of the Morse potential, in consequence of 
the fact that the latter Hamiltonian h expressible solely in terms of the Casimir 
operator of the algebra. Use of the methods of supersymmetric quantum mechanics, 
or factorization, permit the construction of shift operators for the Coulomb problem, 
and quasi-shift operators for the harmonic oscillator, which change the energy as 
well as the angular momentum quantum number. The shift operators for the Morse 
oscillataor as determined by supersymmetric quantum mechanics are equivalent to 
those arising from the so(2,l)  algebraic treatment. By use of the mappings between 
the various systems, the Coulomb shift operators can be used to generate ladder 
operators for the Morse potential and true shift operators for the harmonic oscillator 
potential. These results can be extended to encompass radial Coulomb and oscillator 
problems in an arbitrary number of angular dimensions. In particular, we have 
demonstrated that the one dimensional Morse oscillator can be mapped both to and 
from radial Coulomb and oscillator problems in any number of angular dimensions, 
and these two radial problems can be mapped to and from each other. 
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