

About this Assignment

Due: Wed Dec 12004 10:09 PM EST

Current Score: $\mathbf{0}$ out of 91

Description

practice test 3

Instructions

practice test 3

1. ZumChem5 5.AE.102. [224665] 0/1 points Show Details

Acetylene gas, $\mathrm{C}_{2} \mathrm{H}_{2}(g)$, can be produced by reacting solid calcium carbide, CaC_{2}, with water. The products are acetylene and calcium hydroxide. What volume of wet acetylene is collected at $25^{\circ} \mathrm{C}$ and 741 torr when 5.60 g calcium carbide is reacted with an excess of water? (At $25^{\circ} \mathrm{C}$ the vapor pressure of water is 23.8 torr.)

2. ZumChem5 5.E.061. [224707] 0/3 points Show Details

A piece of solid carbon dioxide, with a mass of 7.6 g , is placed in a 4.0 L otherwise empty container at $2^{\circ} \mathrm{C}$. What is the pressure in the container after all the carbon dioxide vaporizes?
$4.0 \square \times 91.1 \mathrm{~atm}$
If 7.6 g solid carbon dioxide were placed in the same container but it already contained air at 740 torr, what would be the partial pressure of carbon dioxide, PCO_{2} ?
$4.0 \square \times$ 展 1.1 atm
What would be the total pressure, $P_{\text {total }}$, in the container after the carbon dioxide vaporized?
$4.0 \square \times 2.0 \mathrm{~atm}$
3. ZumChem5 8.CP.120. [224840] 0/4 points Show Details

Which of the following molecules have dipole moments? (Select all that apply.)
(a)
$\left\ulcorner[x] \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$
$\square[] \mathrm{CCl}_{4}$
$\square[x] \mathrm{CHCl}_{3}$
x
(b)
$\left\ulcorner[x] \mathrm{N}_{2} \mathrm{O}\right.$
$\left\ulcorner\square \mathrm{CO}_{2}\right.$
x
(c)
$\square[x] \mathrm{PH}_{3}$
$\left\ulcorner[x] \mathrm{NH}_{3}\right.$
x
For the molecules that are polar, indicate the polarity of each bond and the direction of the net dipole moment of the molecule. (Do this on paper. Your instructor may ask you to turn in this work.)

Key: paper submission
4. ZumChem5 9.E.016. [190176] 0/7 points Show Details

Give the expected hybridization of the central atom for the following molecules or ions. (Type your answer using the format $s p 2$ for $s p^{2}$.)
(a) $\mathrm{PCl}_{2}{ }^{-}$

(b) O_{3}

(c) NF_{3}

(d) SO_{3}

(f) SCl_{2}

[PDF] Click here to view the solution for this question.
5. ZumChem5 9.E.024. [189313] 0/19 points Show Details

For each of the following molecules or ions that contain sulfur, predict the molecular structure about each sulfur (including bond angles), and give the expected hybrid orbitals for sulfur. (Select all that apply.)
(a) SO_{3}
molecular structure(s)
\ulcorner [] linear
\square ■ octahedral
\square [] see-saw
\square [] square planar
\square [] tetrahedral
$\square[x]$ trigonal planar
$\square[]$ trigonal pyramidal
\square [] trigonal bipyramid $\square \square]$ V-shaped
x
bond angles
$\square \square 90^{\circ}$
$\square[] 109.5^{\circ}$
$\square[x] 120^{\circ}$ $\left\ulcorner\left[\square 180^{\circ}\right.\right.$
\times
hybridization
$\square[] s p$
$\left\ulcorner[\mathrm{x}] s p^{2}\right.$
$\left\ulcorner[] s p^{3}\right.$
$\left\ulcorner\square d s p^{2}\right.$ $\Gamma[] d s p^{3}$ $\ulcorner\square] d^{2} s p^{3}$
(b) SF_{2}
molecular structure(s)
$\square \square]$ linear
$\square \square]$ octahedral
\ulcorner [] see-saw
\square [] square planar
\square [] tetrahedral
$\ulcorner\quad \square$ trigonal planar
\ulcorner [] trigonal pyramidal
\ulcorner [] trigonal bipyramid
\ulcorner [x] V-shaped
x
bond angles
$\left\ulcorner-\square 90^{\circ}\right.$
$\square[x] 109.5^{\circ}$
$\left\ulcorner[] 120^{\circ}\right.$
$\left\ulcorner\right.$ [] 180°
x
hybridization
$\ulcorner[] s p$
$\left\ulcorner[] s p^{2}\right.$
$\square[\mathrm{x}] s p^{3}$
$\left\ulcorner[] d s p^{2}\right.$
$\Gamma[] d s p^{3}$
$\square[] d^{2} s p^{3}$
(c) SO_{2}
molecular structure(s)
\square [] linear
\square [] octahedral
「 [] see-saw
$\ulcorner[\square$ square
planar
\square [] tetrahedral
$\ulcorner\quad \square]$ trigonal
planar
$\square[]$ trigonal
pyramidal
\ulcorner [] trigonal bipyramid
\ulcorner [x] V-shaped
x
bond angles
ᄃ [] 90 ${ }^{\circ}$
「 [] 109.5°
$\square[x] 120^{\circ}$
$\square\left[180^{\circ}\right.$
x
hybridization
$\Gamma[] s p$
$\left\ulcorner[x] s p^{2}\right.$
$\left\ulcorner[] s p^{3}\right.$
$\ulcorner\square] d s p^{2}$
$\left\ulcorner[] d s p^{3}\right.$
$\left\ulcorner[] d^{2} s p^{3}\right.$
x
(d) $\mathrm{SO}_{3}{ }^{2-}$
molecular structure(s)
\ulcorner [] linear
\ulcorner [] octahedral
$\square[]$ see-saw
\square [] square planar
$\square[]$ tetrahedral
\square [] trigonal planar
\square [x] trigonal pyramidal
$\square \quad \square$ trigonal bipyramid
\ulcorner [] V-shaped

x

bond angles
$\square\left[\square 90^{\circ}\right.$
$\square[\mathrm{x}] 109.5^{\circ}$
$\square[] 120^{\circ}$
$\square[] 180^{\circ}$

\times

hybridization
$\ulcorner\square] s p$
$\square \square] s p^{2}$
$\left\ulcorner[\mathrm{x}] s p^{3}\right.$
$\square \square] d s p^{2}$ $\square[] d s p^{3}$
$\square \square] d^{2} s p^{3}$
x
(e) SF_{6}
molecular structure(s)
\ulcorner [] linear
\square [x] octahedral
\square [] see-saw
\ulcorner [] square planar
\square [] tetrahedral
\ulcorner [] trigonal planar
\square [] trigonal pyramidal
■ [] trigonal bipyramid
\ulcorner [] V-shaped

x

bond angles
$\square[x] 90^{\circ}$
$\square\left[\square 109.5^{\circ}\right.$
$\square[] 120^{\circ}$
$\square[x] 180^{\circ}$
x
hybridization
$\ulcorner[] s p$
$\left\ulcorner[] s p^{2}\right.$
$\ulcorner\square] s p^{3}$
$\Gamma[] d s p^{2}$
$\Gamma[] d s p^{3}$
$\left\ulcorner[\mathrm{x}] d^{2} s p^{3}\right.$
x
(f) $\mathrm{F}_{3} \mathrm{~S}-\mathrm{SF}$
molecular structure(s)
\square [] linear
\ulcorner [] octahedral
\square [x] see-saw
\ulcorner [] square
planar
\ulcorner [] tetrahedral
\ulcorner [] trigonal
planar
$\ulcorner[]$ trigonal
pyramidal
\ulcorner [] trigonal
bipyramid
\ulcorner [x] V-shaped
x
bond angles
$\Gamma[x] 90^{\circ}$
$\square[x] 109.5^{\circ}$
$\square[x] 120^{\circ}$
$\left\ulcorner[] 180^{\circ}\right.$
x
hybridization
$\ulcorner[] s p$
$\left\ulcorner[] s p^{2}\right.$
$\square[\mathrm{x}] s p^{3}$
$\left\ulcorner[] d s p^{2}\right.$
$\Gamma[\mathrm{x}] d s p^{3}$
$\left\ulcorner[] d^{2} s p^{3}\right.$
x

Write the Lewis structure(s) for each molecule or ion. (Do this on paper. Your instructor may ask you to turn in this work.)

Key: paper submission
6. ZumChem5 9.E.028. [227668] 0/17 points Show Details

Many important compounds in the chemical industry are derivatives of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ ．Two of them are acrylonitrile and methyl methacrylate．

Complete the Lewis structures，showing all lone pairs．（Do this on paper．Your instructor may ask you to turn in this work．）

Key：paper submission
Give approximate values for bond angles a through f ．
（a）

（b）$\times{ }^{\text {良 } 120^{\circ}}$
（c）
$\times 180^{\circ}$
（d）

（e）
（f） X 120 $^{\circ}$ X 109.5°

Give the hybridization of all carbon atoms．（Type your answer using the format $s p 2$ for $s p^{2}$ ．）
acrylonitrile
double－bonded carbons
$\square \times$ 星 $\mathrm{sp2}$
triple－bonded carbon
$\square \times$ esp
methyl methacrylate
double－bonded carbons
$\square \times$ 星
carbon double bonded to oxygen
$\square \times$ esp2
methyl carbons
X
In acrylonitrile，how many of the atoms in the molecule lie in the same plane？

How many σ bonds and how many π bonds are there in methyl methacrylate and acrylonitrile？ methyl methacrylate σ bonds

π bonds

7．ZumChem5 9．E．037．［227672］0／12 points Show Details
Using the molecular orbital model，write electron configurations for the following diatomic species and calculate the bond orders， BO （enter $1 / 2$ as 0.5 ）．How many unpaired electrons are present in each one？ （Type your answers in the format（S2s）2（S2s＊）2（P2p）4（S2p）2 for $\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s^{*}}\right)^{2}(\pi 2 p)^{4}\left(\sigma_{2 p}\right)^{2}$ where S stands for σ and P stands for π ．）

```
\(\mathrm{O}_{2}{ }^{+}\)
configuration
bond order \(\times\) R(S2s)2(S2s*)2(S2p)2(P2p)4(P2p*)1
— \(\times 2.5\)
unpaired electrons
\(\square \times \sqrt{91}\)
\(\mathrm{O}_{2}\)
configuration
\(\square \times\) 显(S2s)2(S2s*)2(S2p)2(P2p)4(P2p*)2
bond order
- \(\times\) 區2
unpaired electrons
\(\square \times 0\)
\(\mathrm{O}_{2}^{-}\)
configuration
\(\square \times\) 显 (S2s)2(S2s*)2(S2p)2(P2p)4(P2p*)3
bond order
— \(\times 1.5\)
unpaired electrons
\(\square \times \sqrt{91}\)
\(\mathrm{O}_{2}{ }^{2-}\)
configuration
\(\square \times\) (S2s)2(S2s*)2(S2p)2(P2p)4(P2p*)4
bond order
\(\square \times \sqrt{91}\)
unpaired electrons
- \(\boldsymbol{X}^{\text {區 }} 0\)
```

8．ZumChem5 9．E．042．［227674］0／9 points Show Details
Using the molecular orbital model，write electron configurations for the following diatomic species and calculate the bond orders．Which ones are paramagnetic？
（a） NO^{+}
electron configuration
（o）$\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}($
（b） NO
electron configuration
$\left.\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{2}$
$0\left(_\right)\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}{ }^{*}\right)^{2}(\pi$
$2 p)^{4}(\sigma 2 p)^{2}$
（o）$\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}^{*}}\right)^{2}($
（c） NO^{-} electron configuration

$$
\pi 2 p)^{4}\left(\sigma_{2 p}\right)^{2}\left(\pi 2 p^{*}\right)^{1}
$$

$$
\left.O_{(}\right)\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s^{*}}\right)^{2}(\pi
$$

$$
2 p)^{4}\left(\sigma_{2 p}\right)^{2}\left(\pi 2 p^{*}\right)^{2}
$$

$$
\begin{aligned}
& O_{(\sim}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s^{*}}\right)^{2}(\\
& \left.\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{2} \\
& \left.O_{(}\right)\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s^{*}}\right)^{2}(\\
& \left.\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{2}\left(\pi_{2 p^{*}}\right)^{1} \\
& \sigma_{(0)}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s^{*}}\right)^{2}(\\
& \left.\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{2}\left(\pi_{2 p^{*}}\right)^{2}
\end{aligned}
$$

```
x
bond order
观3
paramagnetic or
diamagnetic?
O(_) paramagenetic
    O(o) diamagnetic
x
```

x
bond order

paramagnetic or diamagnetic?
© (o) paramagenetic
$\bigcirc\left(_\right)$diamagnetic x

x

bond order
— \times 原2
paramagnetic or diamagnetic?

O (o) paramagenetic
$\circ\left(_\right)$diamagnetic
x
9. ZumChem5 9.E.049. [92521] 0/2 points Show Details

Describe the bonding in the O_{3} molecule and the $\mathrm{NO}_{2}{ }^{-}$ion using the localized electron model.

Key: O_{3} and $\mathrm{NO}_{2}{ }^{-}$are isoelectronic, so we only need consider one of them since the same bonding ideas apply to both. For each of the two resonance forms, the central O atom is $s p^{2}$ hybridized with one unhybridized p atomic orbital. The $s p^{2}$ hybrid orbitals are used to form the two sigma bonds to the central atom. The localized electron view of the π bond utilizes unhybridized p atomic orbitals.

How would the molecular orbital model describe the π bonding in these two species?

Key: The π bond resonates between the two positions in the Lewis structures. In the MO picure of the π bond, all three unhybridized p orbitals overlap at the same time, resulting in π electrons that are delocalized over the entire surface of the molecule.
10. ZumChem5 22.E.041. [224256] 0/4 points Show Details

Identify each of the following compounds as a carboxylic acid, ester, ketone, aldehyde, or amine.

$\square \times \longdiv { \text { E ketone } }$

$\square \times$ e carboxylic acid

$\square \times$ 星 amine
11. ZumChem5 22.E.022. [224251] 0/3 points Show Details

Name each of the following alkenes or alkynes.

$\square \times$ 展2,3-dimethyl-1-pentene
12. ZumChem5 22.E.020. [224250] 0/6 points Show Details

Name each of the following cyclic alkanes, and indicate the formula of the compound.

name

$$
\begin{array}{|l}
\hline \\
\text { formula (Type your answer using the format } \mathrm{CH} 4 \text { for } \mathrm{CH}_{4} \text {.) }
\end{array}
$$

$$
\times \geqslant \mathrm{C} 6 \mathrm{H} 12
$$

```
CH
name
\(\square \times\) 星 1-methyl-3-propylcyclopentane
formula
\(\square \times \longdiv { \text { C9H18 } }\)
```



```
name
\(\square \times\) 㙏 2－ethyl－1，3－dimethylcyclohexane
formula
\(\square \times\) C10H20
```

13．ZumChem5 22．E．019．［224249］0／4 points Show Details Name each of the following．

$\square \times$ 展2，2，4－trimethylhexane

$\square \times$ 星 5－methylnonane

X 最 2，2，4，4－tetramethylpentane

\times ？3－ethyl－3－methyloctane
Submit for Testing

