Assignment Previewer Close this window

Previewer Tools					
(Show All	In View: Solution	Assignment Score Mark Help/Hints Key		
practice test 3 (236473)	Hide All	Hidden:			
	Show New F	Randomizatio	on Open in Editor" 🚭 Details		
About this Assignment					
Due: Wed Dec 1 2004 10:09 PM EST	Description practice test 3				
Current Score: 0 out of 91	la stancetica s				
	Instructions practice test 3				
1. ZumChem5 5.AE.102. [224665] 0/1 points					
are acetylene and calcium hydroxide	. What volume of	wet acetyle	m carbide, CaC ₂ , with water. The products one is collected at 25℃ and 741 torr when the vapor pressure of water is 23.8 torr.)		
2. ZumChem5 5.E.061. [224707] 0/3 points St					
A piece of solid carbon dioxide, with What is the pressure in the container			a 4.0 L otherwise empty container at 24℃. vaporizes?		
			it it already contained air at 740 torr, what		
49√ × 1.1 atm	on allomae, 1 6021				
What would be the total pressure, P _{total} , in the container after the carbon dioxide vaporized?					
40√ 2.0 atm					
3. ZumChem5 8.CP.120. [224840] 0/4 points	Show Details				
Which of the following molecules have		s? (Select a	all that apply.)		
_	o alpoio moment	3. (3 0.0000	an and applying		
(a) □ [x] CH ₂ Cl ₂					
□ [ɹ] CCl4					
□ [x] CHCl ₃					
<u> </u>					
X (b)					
□ [x] N ₂ O					
□ [_] CO ₂					
×					
(c)					
□ [x] PH ₃					
□ [x] NH ₃					
×					
For the molecules that are polar, indimoment of the molecule. (Do this on					
Key: paper submission					

Give the expected hybricularing the format sp2 for		for the following molecules o	or ions. (Type your answer
(a) PCI ₂ × F	(b) O ₃ sp2 Sp2	(c) NF ₃ sp3	(d) SO ₃ sp2
(e) SO ₃ ² - Sp3 Sp3	(f) SCl ₂ sp3	(g) SO ₂ Sp2 Sp2	

5.	ZumChem5 9.E.024. [189313] 0/19 points	Show Details	
		s or ions that contain sulfur, predict the give the expected hybrid orbitals for	
	(a) SO ₃	(b) SF ₂	(c) SO ₂
	molecular structure(s)		nid pianar
	★ bond angles□ [_] 90°□ [_] 109.5°□ [x] 120°□ [_] 180°	★ bond angles□ [_] 90°□ [x] 109.5°□ [_] 120°□ [_] 180°	☐ [_] trigonal bipyramid ☐ [x] V-shaped
	Hybridization □ □ sp □ 2	Hybridization □ □ sp □ □ sp □ □	□ [_] 109.5° □ [x] 120° □ [_] 180°
			y hybridization □ [_] sp □ [x] sp ² □ [_] sp ³
	×	×	□ [_] dsp ² □ [_] dsp ³

$r\epsilon$	171	OI	X 7.	Δr

		×
		•
(d) SO ₃ ² -	(e) SF ₆	(f) F ₃ S-SF
		molecular structure(s)
		□ [_] linear `´
molecular structure(s)	molecular structure(s)	[_] octahedral
□ [_] linear	□ [_] linear	□ [x] see-saw
[_] octahedral	[x] octahedral	[_] square
[_] see-saw	[_] see-saw	planar _
□ [_] square planar	[_] square planar	[_] tetrahedral
[_] tetrahedral	[_] tetrahedral	☐ [_] trigonal
☐ [_] trigonal planar	☐ [_] trigonal planar	planar □ [_] trigonal
[x] trigonal pyramidal[_] trigonal bipyramid	☐ [_] trigonal pyramidal ☐ [_] trigonal bipyramid	pyramidal
□ [] V-shaped	□ [] V-shaped	□ [_] trigonal
		bipyramid
×	×	□ [x] V-shaped
bond angles	bond angles	
□ [_] 90°	□ [x] 90°	×
□ [x] 109.5°	□ [_] 109.5°	bond angles
□ [_] 120°	□ [_] 120°	□ [x] 90°
□ [_] 180°	□ [x] 180°	□ [x] 109.5°
	J.	□ [x] 120° □ [_] 180°
X hybridization	X hybridization	□ [_] 100
□ [_] sp	□ [_] sp	×
□ [_] sp ²	□ [_] sp ²	hybridization
		_ [_] sp
\Box [x] sp^3	□ [_] sp ³	□ [_] sp ²
\Box [_] dsp^2	\Box \Box dsp^2	□ [x] sp ³
\Box \Box dsp^3	\square [_] dsp^3	□ [ʌ] sp □ [_] dsp ²
$\Box \Box a^2 s \rho^3$	\Box [x] d^2sp^3	
	,	\Box [x] dsp^3
×	×	$\Box \ [\] \ d^2sp^3$
		×
the Lewis structure(s) for each mowork.)	olecule or ion. (Do this on paper. You	ur instructor may ask you to
Key: paper submission		

6. ZumChem5 9.E.028. [227668] **0/17 points** Show Details

Many important compounds in the chemical industry are derivatives of ethylene (C_2H_4). Two of them are acrylonitrile and methyl methacrylate.

Complete the Lewis structures, showing all lone pairs. (Do this on paper. Your instructor may ask you to turn in this work.)

Key: paper submission

Give approximate values for bond angles a through f.

Give the hybridization of all carbon atoms. (Type your answer using the format sp2 for sp^2 .)

acrylonitrile
double-bonded carbons

| X 9 sp2 |
triple-bonded carbon
| X 9 sp

methyl methacrylate double-bonded carbons

carbon double bonded to oxygen

| X | sp2

| x | sp2

| methyl carbons

| X | sp3

In acrylonitrile, how many of the atoms in the molecule lie in the same plane?

× 7

How many σ bonds and how many π bonds are there in methyl methacrylate and acrylonitrile? methyl methacrylate

 σ bonds

 π bonds

▶ ₹ 2

acrylonitrile σ bonds

| X | 6 | π bonds | X | 3 |

7. ZumChem5 9.E.037. [227672] 0/12 points Show Details

Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders, BO (enter 1/2 as 0.5). How many unpaired electrons are present in each one? (Type your answers in the format (S2s)2(S2s*)2(P2p)4(S2p)2 for $(\sigma_{2s})^2(\sigma_{2s})^2(\sigma_{2p})^4(\sigma_{2p})^2$ where S stands for σ and P stands for π .)

8. ZumChem5 9.E.042. [227674] **0/9 points** Show Details

Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders. Which ones are paramagnetic?

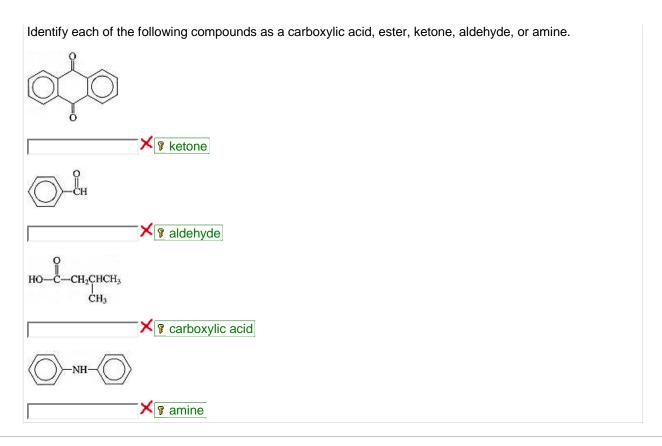
(b) NO

(a) NO⁺ electron configuration
$$(o) (\sigma_{2s})^{2} (\sigma_{2s}^{*})^{2} (\sigma_{2p}^{*})^{2} (\sigma_{2$$

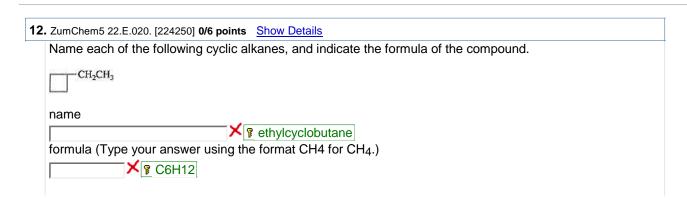
electron configuration
$$\circ (_) (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p})^2$$

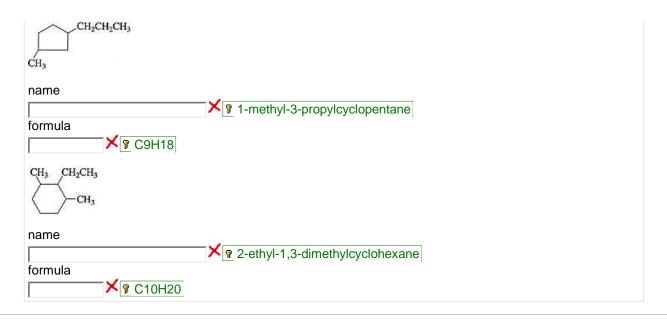
$$\circ (\mathbf{o}) (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p})^2 (\pi_{2p}^*)^1$$

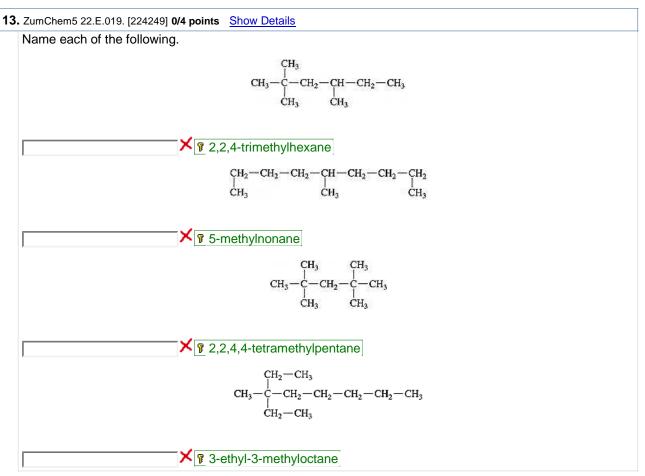
$$\circ (_) (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p}^*)^4 (\sigma_{2p}^*)^2 (\pi_{2p}^*)^2$$


(c) NO⁻ electron configuration
$$C (_) (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2s}^*)^2 (\sigma_{2p}^*)^4 (\sigma_{2p}^*)^2$$

$$C (_) (\sigma_{2s}^*)^2 (\sigma_{2s}^*)^2 (\sigma_{2p}^*)^4 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2$$


×	×	×
bond order	bond order	bond order
X § 3	× № 2.5	★
paramagnetic or	paramagnetic or	paramagnetic or
diamagnetic?	diamagnetic?	diamagnetic?
○ (_) paramagenetic	(o) paramagenetic	○ (o) paramagenetic
(o) diamagnetic	C (_) diamagnetic	C (_) diamagnetic
× `´	X	X


es	Shem5 9.E.049. [92521] 0/2 points Show Details Scribe the bonding in the O ₃ molecule and the NO ₂ ion using the localized electron model.
_	
	Key: O ₃ and NO ₂ are isoelectronic, so we only need consider one of them since the same
	bonding ideas apply to both. For each of the two resonance forms, the central O atom is sp^2
	hybridized with one unhybridized p atomic orbital. The sp^2 hybrid orbitals are used to form the
	two sigma bonds to the central atom. The localized electron view of the π bond utilizes
	unhybridized <i>p</i> atomic orbitals.
lov	v would the molecular orbital model describe the π bonding in these two species?
	Key: The π bond resonates between the two positions in the Lewis structures. In the MO picture
	Key: The π bond resonates between the two positions in the Lewis structures. In the MO picure of the π bond, all three unhybridized p orbitals overlap at the same time, resulting in π electrons


10. ZumChem5 22.E.041. [224256] **0/4 points** Show Details

11	1. ZumChem5 22.E.022. [224251] 0/3 points Show Details				
	Name each of the following alkenes or alkynes.				
	CH ₃ —CH=CH—CH ₃				
	✓ 2-butene				
	$ \begin{array}{c} CH_{3} \\ C \equiv C - CH_{2} - CH_{3} \end{array} $				
	✓ 2-pentyne				
	CH ₂ =C—CH—CH ₃				
	X 2,3-dimethyl-1-pentene				

Submit for Testing