EXAM 3 CHEMISTRY 225b

Friday, April 25, 2008

NAME (print):		
TA:	Day:	Time:
Take a few moments to look over	er the exam.	Answer each question on the exam paper.
Important clues, points, and stru	ctures are in l	oold.
Do all preliminary drawing or The work sheets will not be grad		on the work sheets at the end of the exam.
The exam is 55 minutes.		
STOP writing and hand in your	exam when y	ou are asked to do so.
REMEMBER: Neatness is to y	our advantage	2.
1. (30 pts) Reactions		
2. (30 pts) Potpourri		
3. (20 pts) Synthesis		
4. (20 pts) Structure		
		-
Total (100 pts)		

1. (30 pts) **Reactions:** Provide answers to the following reactions.

a)
$$CH_2OH$$
 CO_2CH_3 CO_2CH_3

b) 3-heptyne
$$\frac{\text{HgSO}_4}{\text{ag. H}_2\text{SO}_4} \rightarrow \mathbf{A} + \mathbf{B}$$

d) (not the same route as 2c)

3-hexyne — meso-3,4-hexanediol

- 2. (30 pts.) **Potpourri:** Complete each of the following questions.
 - a) Stable solutions of the lithium salt of 1-octyne can be prepared in which of the following solvents (**Circle** your answer(s)).
 - (E)-3-hexene H_2O acetone NH_3 (CH_3)₃COH
 - b) Lindlar reduction of 2-pentyne liberates 37.4 kcal/mol of heat. Hydrogenation of (*E*)-2-pentene liberates 27.4 kcal/mol of heat to form n-pentane (ΔH_f° =-35.1 kcal/mol). **Circle** your **best estimate** for the heat of formation of 2-pentyne (kcal/mol)? (What do you know about the ΔH_f° of (*E*)- and (*Z*)-disubstituted alkenes?)
 - -29.7 -30.7 +29.7 +30.7 -7.7
 - c) **Circle** the halide(s) that will form viable Grignard reagents.

BrCH₂CH₂Br HOCH₂CH₂Br CH₃CH₂OCH₂CH₂Cl BrCH₂CH₂CHO BrCH₂CH₂CO₂H

d) **Circle** the greatest number of compounds that are at the same oxidation level.

e) **Circle** the products expected to be formed during the hydrolysis of methyl benzoate with $H_3^{18}O^+$.

3. (20 pts) **Synthesis:** Design a synthesis of (\pm) -epoxide 1 using 2-butyne as your only source of carbon. All other reagents are available to you. [Hint: You did most of this problem on your homework.]

4. (20 pts). **Structure:** Optically-active alkyne **A**, $C_{10}H_{18}$, undergoes reduction to form compound **B** ($C_{10}H_{20}$). Compounds **A** or **B** form a **single** (S)-carboxylic acid ($C_5H_{10}O_2$) **C** upon oxidation with aqueous KMnO₄. [At this point you should know the structures of **A** and **C** and some of **B**]. Compound **B** also reacts with bromine to form **two** (and not one) optically active dibromides **D** and **E** (**D** and **E** are not distinguishable). What are the structures of **A-E**? Show how **D** and **E** determine the stereochemical issue in **B**. How was **A** reduced to **B**?

Work Sheets

Name:	,
Name:	

Work Sheets

Work Sheets