EXAM 1

CHEMISTRY 220

Friday, September 24, 2010

NAME (print):				
TA:	Sect. D	ay:	Sect. Time:	
Take a few mor	ments to look over	the exam. Answer	each question on the exam p	paper.
		es. You may use m Periodic Table on p	olecular models. Important age 7.	clues and
-		-	work sheets at the end of the vork sheets from the exam.	e exam. The
The exam is 55	minutes.			
STOP writing a	and hand in your e	xam when you are a	sked to do so.	
REMEMBER:	Neatness is to yo	ur advantage.		
1. (20 pts) Conf	formation I			
2. (20 pts) Conf	formation II			
3. (25 pts.) Potp	oourri			
4. (20 pts) Ther	mochemistry			
5. (15 pts) Bond	ding/Orbitals			
		 		

Total (100 pts)

1. Conformation I: (20 pts) For the eclipsed and staggered conformations of 2,2-dimethybutane viewed along the C₂-C₃ sigma bond, **draw a Newman projection** of the **most** stable eclipsed and staggered conformations. Place the energies for each interaction in the Newman projections below. [Use the **circles** as templates for the Newman projections.] Calculate the total energy (kcal/mol) of both conformations. Place your answer in the appropriate **box**. [H/H, eclipsed, 1.0 kcal/mol; CH₃/H eclipsed, 1.3 kcal/mol; CH₃/CH₃, eclipsed, 3.0 kcal/mol; CH₃/CH₃, gauche, 0.9 kcal/mol.] **Show your work!**

2. Conformation II: (20 pts) Consider the stereoisomer of 1-chloro-1,4-dimethylcyclohexane (1) shown here.

a) (10 pts) **Draw** the chair conformations below so that the equilibrium arrows are correct. Be sure all groups are **clearly** labeled axial or equatorial.

chair A chair B

b) (10 pts) What is the value of $\Delta(\Delta G^{O})$ for the above equilibrium given the following A-values for the monosubstituted (X) cyclohexane: X = Cl = 0.5 kcal/mol; $X = CH_3 = 1.8$ kcal/mol; $X = C_2H_5 = 1.9$ kcal/mol? **Show calculations**.

Chair A energy = _____

Chair B energy=

- 3. **Potpourri**: (25 pts.; equal weight) **Circle** the best answer(s) where applicable in each of the following:
- a) **Estimate** the difference in the heat of combustion and heat of formation in kcal/mol for *cis* and *trans*-1,4-dimethylcyclohexane. **Explain briefly.**

b) **Circle** the "acids" that are readily deprotonated by n-butyllithium (n-CH₃CH₂CH₂CH₃Li).

ethanol CH_3CO_2H NH_3 NH_4^+ acetylene

c) Circle the species with sp² hybrid atoms.

HCN ethylene CO_2 $CH_2=C=CH_2$ $[BeCl_3]^{-1}$

d) **Briefly** explain and illustrate why ClCH₂CH₂Cl has a net dipole while *trans*-ClCH=CHCl does not. [Newman projections of the most stable conformations of 1,2-dichloroethane might be helpful.]

e) The following "acids" all have resonance stabilized conjugate bases. Rank these acids (low pKa to high pKa) with the numbers 1 – 5, respectively. [Most acidic gets number 1.]

- 4. **Thermochemistry:** (20 pts.) n-Heptane (ΔH_f° = -44.8 kcal/mol) and 2-methylhexane (ΔH_f° = --46.6 kcal/mol) both have the formula C_7H_{16} .
- a) (5 pts.) What type of isomers are they?
- b) (5 pts.) What is the difference in their heats of combustion?
- c) (10 pts.) Prove part b) with a "Standard State" illustration of the combustion of the two isomers. [Your diagram should show the products of combustion and the number of moles of each.] Write an equation for the heat of combustion of n-heptane using its heat of formation.

5. **Bonding/Orbitals:** (15 pts) The "planar" compound **1** has a dipole moment. **Explain** and **illustrate** with an orbital diagram how this is possible.

$$C = C = C$$
 $C = C$
 CH_3

inailic.

7

Periodic Table

Name:			
	 	 	_

8

Work Sheet

Name:	9

Work Sheet

Name:	10
-------	----

Work Sheet