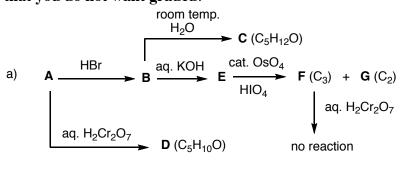
FINAL EXAMINATION

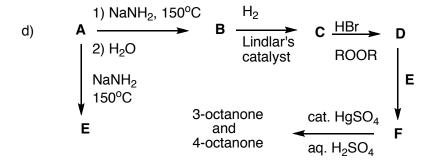
Organic Chemistry, Chem 220 9 A.M.; Saturday, December 11, 2010


TA:	Section Day:	Section Time:
comfortable. Import the worksheets. The with an additional one name on the cover sh calculators or electro	ant points and unknowns and worksheets will not be grade hour for review. STOP weet and subsequent pages	Do problems first with which you are most re in bold type. Do all preliminary work on ed. The exam is the length of two hour exams writing when you are asked to do so. Put your (except for Work Sheets) where indicated. No able and Bond Dissociation Energy table are on are on page 16.
.REMEMBER: Neath	ness is to your advantage.	
Have a GREAT wint	er break!	
1. Spectroscopy/Structure	cture (25 pts)	5. Thermochemistry (25 pts.)
2. Reactions I (32 pts	; 4 of 5)	6. Reactions II (30 pts., 6 of 8)
3. Potpourri (40 pts:	8 of 10)	7. Kinetics/ Thermodynamics (20 pts.)
4. Synthesis (25 pts	.)	8. Mechanisms (25 pts.)
Total (222 pts)		

Note: The final exam is worth 160 points toward the final grade. The grade shown above will be multiplied by 0.72 to obtain the adjusted score ($222 \times 0.72 = 160$).

Mana	
Name	

1. **Spectroscopy/Structure**: (25 pts.) Achiral compound **A** (M⁺ = 112; Degrees of Unsaturation = 2) is inert to aqueous chromic acid and its infrared spectrum displays a strong absorption at 1717 cm⁻¹. Compound **A** reacts with **one equivalent** of Grignard reagent **B** (RMgBr) to form a mixture of achiral diastereomers **C** and **C'**, each of whose mass spectrum displays a molecular ion at M⁺ = 128. Compound **C** is more stable than compound **C'**. Compounds **C** and **C'**, together or separately, react **readily** with catalytic H₂SO₄ by an E1 mechanism to give two isomers [(±)-**D** (major) and achiral **E** (minor)]. Ozonolysis and dimethyl sulfide reduction of compound (±)-**D** provides **F**, which upon reduction with LiAlH₄ gives **G**, **3**-**methylheptan-1,6-diol**. Exposure of **E** to excess hot aqueous KMnO₄ gives rise to compounds **A** and **H**. What are the structures of **A** – **H**? **Show your reasoning.** [**Hint:** Work backwards from **G**.]


2. **Reactions I:** (4 x 8 pts. = 32 pts.) **Do 4 of 5.** Provide structures for the unknown compounds. Be explicit about stereochemistry, optical activity, racemates, etc. No mechanisms required! **If** you do more than four problems, cross out (with a large X through the solution) the one that you do not want graded.

b)
$$\mathbf{A} (C_8H_{14}) \xrightarrow{\mathbf{B}} \mathbf{C} \xrightarrow{\text{cold, alkaline}} \mathbf{D} \text{ (meso)} \xrightarrow{\text{hot}} \mathbf{E}$$

$$\downarrow \mathbf{F}$$

$$\mathbf{G} \xrightarrow{\text{Br}_2} \mathbf{H} \text{ (meso - C}_8H_{16}Br_2)}$$

e)
$$A (C_6H_{14}O_2)$$
 \longrightarrow $B (C_6H_{12}O)$ \longrightarrow $B (C_6H_{12}O)$ \longrightarrow $A (C_6H_{12}O)$ \longrightarrow A

3. Potpourri: $(8 \times 5 \text{ pts.} = 40 \text{ pts.})$ Do 8 of 10 problems. If you do more than eight problems, cross out (with a large X through the solution) the ones that you do not want graded.

i) a) **Circle** the greatest number of compound(s) that are at the same oxidation level. b) Place a **square** around those functional groups that have sp² hybridization.

ii) **Circle** the mass spectral pattern that is typical of the ion CHCl₂⁺? **Explain briefly** and provide relative intensities.

iii) Testosterone C₁₉H₂O₂ contains four rings, one secondary alcohol, one ketone and one double bond. What is the molecular formula of this steroid? **Show work**.

iv) The specific rotation of (S,S)-tartaric acid is $[\alpha] = -12^{\circ}$. What is the percentage of each enantiomer in a mixture of the two enantiomers that has $[\alpha] = +2^{\circ}$. Show work.

Name _	 6
	_

v) **Circle** the terms that apply to E2 eliminations.

orbital overlap rehybridization isotope effect

intermediate kinetically controlled

vi) (E)-(3R,6S)-3,6-dimethyl-4-octene (1) is a meso compound yet it does not have a plane of symmetry. What makes it meso? [**Hint:** Think of one of the two reasons why meso-tartaric acid is actually meso.]

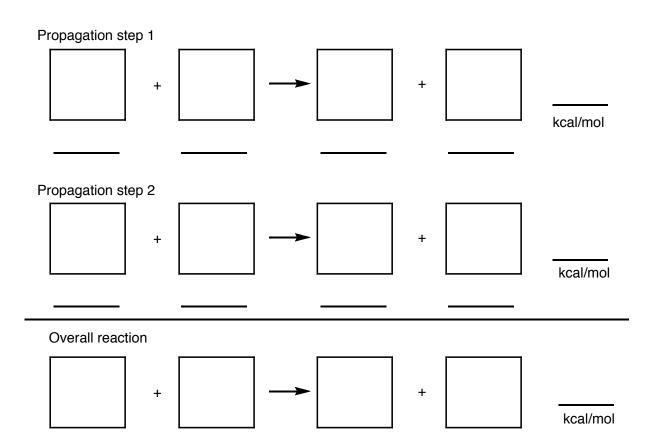
vii) Provide a **diagram and an equation** that relates bond dissociation energy and heat of formation for a generic alkane, R-H.

Name	7
------	---

viii)	The bonds (shown as line bonds) in each of the following functional groups absorb
	energy in the infrared region. Number the structures on the lines in order of increasing
	vibrational frequency $(1 = lowest; 5 = highest)$.

O II RCOR	D D*	O BCNIH	DO II	O II RCCI
RCOR	R-Br	RCNH ₂	RO-H	RCCI

ix) In the free radical chlorination of (S)-1-chloro-2-methylbutane to form dichloropentanes, **draw** the dichloride(s) that is no longer optically active. Give a **ONE WORD** explanation why it is no longer optically active.


x) **Circle** the bases that are protonated by 1-butyne.

KNH₂ RMgCl CH₃ONa NH₃ LiOH

4. **Synthesis:** (25 pts.) Design a synthesis of of 2,5-dimethylhexan-2-ol (1) using 2-methyl-2-bromopropane (C₄H₉Br) as your **only** source of carbon. All other reagents are available to you. No mechanisms are required.

Name

5. **Thermochemistry:** (25 pts.) Determine the heat of formation of chlorocyclooctane prepared by the free radical chlorination of cyclooctane. Provide the two propagation steps and the overall reaction for this process. **Place the reactants and products in the appropriate boxes.** Compute the heats of each reaction using the data in the BDE Table (pg. 15) and the following data: ΔH_f° (HCl) = -22.1 kcal/mol; ΔH_f° (cyclooctane) = -29.7 kcal/mol. **Show work**.

6. **Reactions II:** (30 pts.) **Do 6 of 8.** Provide structures for the unknown compounds or provide reagents. Be explicit about stereochemistry, optical activity, racemates, etc. No mechanisms required! **If you do more than 6 problems, cross out (with a large X through the solution) the one(s) that you do not want graded**.

a)
$$C_2H_5ONa$$
 A

b) (R) -
$$CI$$
 \xrightarrow{CI} CI $\xrightarrow{excess CH_3OH}$ A room temperature

c)
$$\frac{\text{cat. OsO}_4}{\text{2 equiv. HIO}_4} \quad \text{A (M}^+ = 44) \quad + \quad \text{B}$$

d)
$$\frac{1) \text{ cat. OsO}_4, \text{ H}_2\text{O}_2}{2) \text{ 1 eq. TsCI, pyridine}} \text{ A}$$
3) KOH

e)
$$CHO$$
 reagents? OH OH OH

g)
$$(\pm)$$
-

H,

(no $S_N 2$)

 (\pm) -

OH

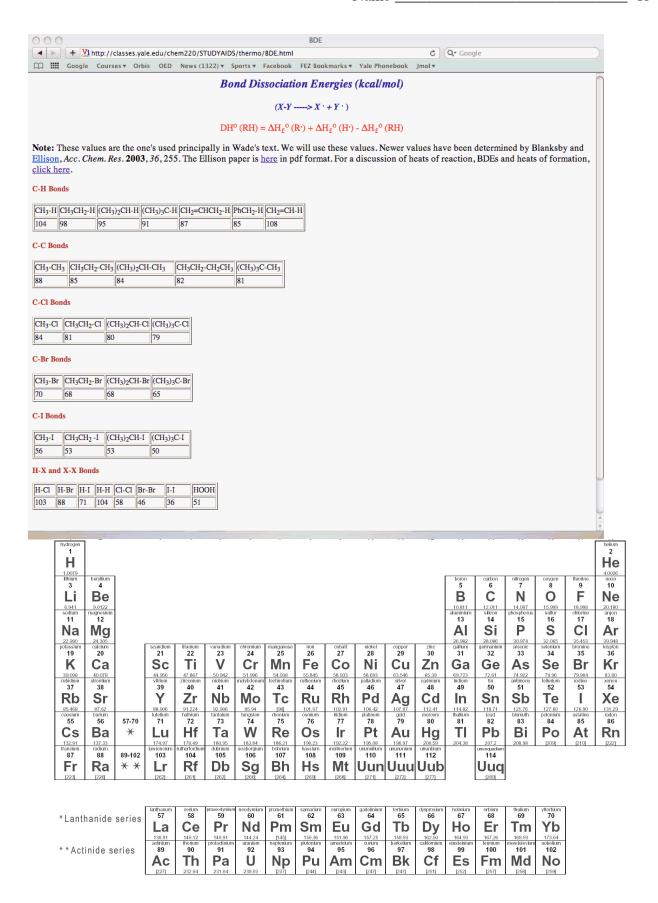
OH

h) (S)-CH
$$_3$$
CH $_2$ CH $_2$ CHDBr
$$\frac{\text{1 equiv. aq. KOH}}{\text{1 equiv. thiophenol}} A$$

Name	12

- 7. **Kinetics/Thermodynamics:** (20 pts.) Do **2 of 4**. Keep your answer short and to the point! **If** you do more than two problems, cross out (with a large X through the solution) the one(s) that you do not want graded.
- a) What is the structure of **A** and why? Is the reaction kinetically or thermodynamically-controlled? Why? **Be concise.**

b) The E2 reaction of 2-bromobutane with strong base (kinetically-controlled) **does not** give the same distribution of butenes (there are three of them) that is obtained by acid-catalyzed dehydration of 2-butanol (thermodynamically-controlled). **Explain briefly.**


Name	13

c) The formation of cyclohexene from 1,7-octadiene in the presence of Grubbs' catalyst
(Ru=CHPh) and Fischer esterification illustrate two different techniques for shifting unfavorable
equilibria. Explain briefly.

d) In acyclic compounds and flexible ring compounds, why is anti-periplanar (180° dihedral angle) favored over syn-periplanar (0° dihedral angle) in E2 elimination?

- 8. **Mechanisms:** (25 pts) Provide a mechanism using the curved arrow formalism for **one** of the following reactions. **If you do more than one problem, cross out (with a large X through the solution(s) of the one(s) that you do not want graded**.
- a) Swern oxidation of 2-deuterio-2-butanol
- b) The conversion of 3-hexyne to (*E*)-3-hexene
- c) The conversion of 3-hexyne to 3-hexanone in the presence f HgSO₄
- d) ozonolysis of cyclohexene

Name ______ 15

Name ______ 16

Natural Abundance of Common Elements

Hydrogen $^{1}H = 99.985\%$ $^{2}\text{H} = 0.015\%$ Carbon 12 C = 98.90% 13 C = 1.10% 14 N = 99.63% Nitrogen 15 N =0.37% $^{16}O = 99.762\%$ ¹⁷O =0.038% ¹⁸O =0.200% Oxygen Sulfur $^{32}S = 95.02\%$ 33 S =0.75% $^{34}S = 4.21\%$ 36 S =0.02% Chlorine $^{35}\text{C1} = 75.77\%$ $^{37}\text{C1} = 24.23\%$ 79 Br = 50.69% $^{81}\text{Br} = 49.31\%$ **Bromine**

A Values

Energy Differences Between Equatorial and Axial Monosubstituted Cyclohexanes

axial equatorial

X Group	ΔG^{o} (axial-equatorial) [kcal/mole]	Δ G ^o (axial-equatorial) [kJ/mole]
-CN	0.2	0.8
-F	0.2	0.8
-Cl	0.5	2.1
-Br	0.6	2.5
-СНО	0.6	2.5
-OH	1.0	4.1
-СООН	1.4	5.9
-CH ₃	1.8	7.6
CH ₂ CH ₃	1.9	7.9
-CH(CH ₃) ₂	2.1	8.8
-C(CH ₃) ₃	5.4	23
-CO ₂ CH ₃	1.2	5.0
-CCH	0.4	1.7
-SiH ₃	1.5	6.0
-Si(CH ₃) ₃	2.5	10.5
-Sn(CH ₃) ₃	1.0	4.2
-C ₆ H ₅	2.8	11.7
-N ₃	0.5	2.1
-OCH ₃	0.6	2.5