FINAL EXAM

Organic Chemistry

Chemistry 220a; 2 P.M., Wednesday, December 14, 2005

NAME (print): _____

TA	: <u> </u>	Section Day:	Section Time:	
and exa	d unknowns are in bold typ	be. Do all preliminary war exams with an addition	work on the worksheets. Sal one hour for review.	are most comfortable. Important points The worksheets will not be graded. The STOP writing when you are asked to do Sheets) where indicated.
. R]	EMEMBER: Neatness is to	o your advantage.		
Ha	ve a GREAT winter break	k!		
1.	Spectrometry/Structure I (30 pts) 5. Ti	he Standard State (25 pts))
2.	Reactions I (32 pts; 4 of 6)) 6. N	Iechanisms (25 pts.)	
3.	Potpourri (48 pts; 6 of 8)	7. Sy	enthesis (25 pts.)	
4.	Reactions II (32 pts)	8. P.	M.H.S.W.W. (33 pts.)	
To	tal (250 pts)			
1.	converted into ketone (treatment with aqueous in acetone (solvent), co	(S)- B with PCC or aqueous KOH, produces achiral a compound E is formed. When	is chromic acid. Compount \mathbf{D} as the Zaitsev proper \mathbf{E} is treated with aque	mass spectrum is shown below, is and A forms tosylate C , which upon oduct. If tosylate C is exposed to LiBr cous KOH, achiral compound F is

- S on LiBr formed as the principal constitutional isomer. Hydrogenation of D or F produces the same alkane G but D liberates more heat (0.4 kcal/mol) than **F**. Warm permanganate oxidation of **D** or **F** affords **H** (C₄H₈O) and **I** (C₂H₄O₂). [Hint: Working backwards is useful.]
 - a) (25 pts) What are the structures A-H? Explain and illustrate. Do not forget absolute and relative stereochemistry where they apply. [The structures can be determined without the spectrum.]
 - b) (5 pts) Explain the source of the base peak in the spectrum, i. e., why is m/z 87 not the base peak.

Continued on the next page...

1. Continued

2. $(4 \times 8 \text{ pts} = 32 \text{ pts})$ **Reactions I:** Provide the reagents (and conditions, if necessary) required to complete **4 of 6** of the following chemical transformations. If additional carbon atoms are necessary, select your own source. Several steps may be required. If you complete more than four questions, **cross out** the ones that you do not want graded.

continued on the next page...

- 3. (6 x 8 pts = 48 pts) **Potpourri:** Complete **6 of 8** of the following questions. If you complete more than six questions, **cross out** the ones that you do not want graded.
 - a) Circle the racemic compounds that are capable of resolution.

b) **Describe fully** (name, structure, etc.) the major monobromide derived from the free radical bromination of (*S*)-1-chloro-2-methylbutane. Briefly explain your answer.

a)
$$(3R. 6S)$$
- (E) -3,6-dimethyl-4-octene $\xrightarrow{\text{cat. OsO}_4}$ $\xrightarrow{\text{HIO}_4}$

c) OH
$$\xrightarrow{\text{PCC}}$$
 $\mathbf{A} (C_5) + \mathbf{B} (C_{10})$ opt. act.

Continued on the next page...

5. (25 pts) **Standard State:** Draw a Standard State Diagram that illustrates the heat of formation of a methyl radical and the heat of combustion of methane. In addition, calculate these two quantities from the data provided. The diagram need not be to scale. **Show work**. DH_f^o (methane) = -17.4 kcal/mol; $DH_{combustion}^o$ (graphite) = -94.0 kcal/mol; $DH_{combustion}^o$ (graphite) = -94.0 kcal/mol; $DH_{combustion}^o$ (H₂) = -68.3 kcal/mol; $DH_{combustion}^o$ (methane) = 104 kcal/mol.

c) Provide the three individual steps and reagents for the reverse reaction,---namely the conversion of $2 \rightarrow 1$.

d) The answer to a) must be the same as the total electron change in c). Illustrate and explain briefly.

7. (25 pts) **Synthesis:** Capsaicin (1) is the "hot" in hot chili peppers. This compound has found use in pain management in medicine. To study the effect of double bond location in 1, acid 2 is required to synthesize a double bond analog of 1. A student designs a synthesis of 2 from acetylene, isobutylene, and 4-bromo-1-butanol. Her plan is to use acetylene chemistry. She also recognizes that isobutylene will not only be incorporated into carboxylic acid 2 but it will also serve as a protecting group in her planned synthesis. She has all reagents available to her. Show what she has in mind.

8. (33 pts.; 4 x 8 potions; 1 pt. re: gate) **P.M.H.S.W.W.** "Known for tormenting students with laborious homework assignments while cooking up sinister potions in class, Snape seems like a textbook Orgo professor."

"Snape's Yale analogue is most definitely Professor Frederick Ziegler," Mark Fisher '07 said. "Infamous for his tacit encouragement of competition among his more elite students, so I hear, he seems the most likely candidate to have invented high-level, malicious organic chemistry reactions in the margins of his college text book." YDN, 11/18/05.

Alas, my alter ego has been revealed (**Potions Master** of the **Hogwarts School** of **Witchcraft** and **Wizardry**). I leave you budding wizards of Slytherin House, Gryffindor (particularly you, Potter!), Sillimania, and Branfordium (quod alii loci [sic]) to **provide the correct "potions" for the alchemical transformations on the next page**. [Note: The original potions were provided by three horrid hags, close associates of the soon to be Thane of Cawdor.]

"Eye of newt, and toe of frog, Wool of bat, and tongue of dog, Adder's fork, and blind-worm's sting, Lizard's leg, and howlet's wing,-- For a charm of powerful trouble, Like a hell-broth boil and bubble."

--From *Macbeth* (IV, i, 14-15)

(What? No wolfsbane!)

H. P. aka E. Z.

continued on the next page...

8. Continued ...(1 pt.) State something knowledgeable about the chirality of the tetrahedra on the CRB gate.

Work Sheets Work Sheets

Work Sheets