Radical Chain Reactions

Substitution Theory

1838 - chlorination of acetic acid

$$\underline{\mathbf{C}}_{4}\mathbf{H}_{4}\mathbf{O}_{2} + \mathbf{Cl}_{6} = \underline{\mathbf{C}}_{4}\mathbf{H}\mathbf{Cl}_{3}\mathbf{O}_{2} + \mathbf{H}_{3}\mathbf{Cl}_{3}$$

$$C = 6, O = 16$$

$$C_2H_4O_2 + 3Cl_2 = C_2HCl_3O_2 + 3HCl$$

J. B. Dumas (1800 -1884)

Free Radical Chain Reaction of Methane with Chlorine: An Alternative Mechanism?

Free Radical Chain Reaction of Ethane with Chlorine

Free Radical Chain Reaction of Propane with Chlorine Reactivity of 1° vs. 2° C-H Bonds

Free Radical Chain Reaction of Propane with Chlorine Reactivity of 1° vs. 2° C-H Bonds

Primary C-H bonds are less reactive (BDE = 98 kcal/mol) than secondary C-H bonds (BDE = 95 kcal/mol), but

there are more primary C-H bonds than secondary C-H bonds.

Type C-H	#	Yield (%)	%/#	Relative Reactivity
1º	6	40	6.67	1
2 °	2	60	30	4.5

Primary C-H bonds have the numbers but not the reactivity! (Tertiary C-H bond: 91 kcal/mol)

Type C-H	#	Yield (%)	%/#	Relative Reactivity
1º	9	62	6.88	1
3°	1	38	38	5.5

Free Radical Chain Reaction of 2-Methylbutane with Chlorine Predicting Product Ratios

$$C_5H_{12} + CI_2 \longrightarrow C_5H_{11}CI + HCI$$

1-Chloro-2-methylbutane

1-Chloro-3-methylbutane

2-Chloro-3-methylbutane

2-Chloro-2-methylbutane

Туре	#	Relative Reactivity	# x R.R.	fraction	%
Primary 1	6	1	6	6/23.5	25.5
Primary 2	3	1	3	3/23.5	12.8
Secondary	2	4.5	9	9/23.5	38.3
Tertiary	1	5.5	5.5	5.5/23.5	23.4

Why do radical halogenations stop at the monochloro compound?

They don't!

The reaction of molar quantities of methane and chlorine yields a distribution of chlorinated methanes.

Chloromethane (Methyl chloride)	CH₃CI	b.p24°C
Dichloromethane (Methylene chloride)	CH ₂ Cl ₂	b.p. 40°C
Trichloromethane (Chloroform)	CHCl ₃	b.p. 61°C
Tetrachloromethane (Carbon tetrachloride)	CCI ₄	b.p. 77°C

Readily separated by distillation.

What about bromination and iodination?

At 27°C, the chlorination of methane is ~10¹¹ times faster than the bromination and, bromination is ~10¹⁰ times faster than iodination under the same conditions!

Reaction Coordinate

Activation Energy of Fluorine, Chlorine and Bromine Atoms with Methane And the Relative Reactivity of the Halogen Atoms with C-H Bonds

$$CH_4 + X_2 \longrightarrow CH_3X + HX$$

X	E _a (kcal/mol)	BDE HX [CH ₃ X]	°C	1°	2 °	3°
F	1.2	136 [115]	27	1	1.2	1.4
CI	4	103 [84]	27	1 1	3.9 4.5	5.1 5.5
Br	18	88 [70]	127	1 1	82 97	1600 -

Reaction Selectivities: Anson, Fredricks, Tedder (1958); Wade's Text

Typical C-H Bond Dissociation Energies

BDEs (kcal/mol)	1 º	2 º	3°	allylic	vinylic & aromatic	benzylic
2-Methylbutane	98	95	91	-	1	-
Cyclohexene	-	95	-	87	108	-
Toluene	-	-	-	-	108	85

The End