Supporting Information

Reversible Visible–Light Photooxidation of an Oxomanganese Water–Oxidation Catalyst Covalently Anchored to TiO₂ Nanoparticles

Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT 06520-8107

*E-mail Addresses: robert.crabtree@yale.edu; gary.brudvig@yale.edu; victor.batista@yale.edu

Table of Contents

Figure S1. Powder X–ray diffraction patterns of TiO₂ NPs

Figure S2. Transmission electron micrographs of TiO₂ NPs

Figure S3. Spectrum of the visible–light lamp used in this study

Figure S4. Molecular model of TiO₂ anatase surface

Figure S5. Molecular model of complex 1 and structure of 1–D70

Figure S6. EPR spectra of Mn"–L–P25 and Mn"–L–D70

Figure S7. EPR spectra of 1–D70 and 1–L–D70

Figure S8. EPR spectra of Mn"–L–TiO₂ after the reactions with oxone

Figure S9. Simulated IR spectra of diphenyl amide in cis and trans configurations

Figure S10. Light–minus–dark EPR spectrum of L–P25

Complete Reference 53
Figure S1. Powder X–ray diffraction patterns of (a) well–crystallized P25 and (b) near–amorphous D70 TiO$_2$. Diffractions of various anatase (red) and rutile (blue) crystal faces are labeled.

Figure S2. Transmission electron micrographs of P25 (left) and D70 TiO$_2$ (right). Scale bars are 100 nm.
Figure S3. Spectrum of the visible–light lamp used in this study.

![Plot of spectrum](image)

Figure S4. A section of the TiO$_2$ anatase NP model optimized at the DFT level in the PW91/GGA approximation with plane–wave basis ultrasoft Vanderbilt pseudopotentials. Atoms are represented by spheres of different colors and sizes: H (silver, small), O (red), Ti (silver, large).

![Diagram of TiO$_2$ anatase NP](image)
Figure S5. Left: Complex 1 optimized in vacuum; atoms are represented by spheres of different colors: H (silver), O (red), N (blue), C (light green), Mn (purple). Right: A schematic representation of complex 1 deposited on TiO₂ surfaces by substituting one of its water ligand with a TiO₂ NP.

Figure S6. EPR spectra of (a) Mn^{II}–L–P25 and (b) Mn^{II}–L–D70. A broad surface-bound Mn(II) signal centered at $g = 2.0$ is seen in both spectra. A sharp resonance corresponding to organic radicals and a relatively small Ti^{3+} (lattice-trapped electron in TiO₂) signal are labeled in the spectrum of Mn^{II}–L–P25. The 6–line EPR signal characteristic of aqueous Mn^{2+} is also visible in the spectrum of Mn^{II}–L–D70 due to the existence of residual solvated Mn^{3+} ions adsorbed directly on the D70 surface after functionalization. The EPR spectrum of Mn^{II}–L–D70 was scaled down to 1/10 of its original intensity to allow a better comparison. The spectra were collected in dark at 7 K.
Figure S7. EPR spectra of (a) 1–D70 and (b) 1–L–D70 prepared by the KMnO$_4$ method. The same amounts of materials were used in the EPR measurements. The spectra were collected in dark at 7 K.

Figure S8. EPR spectra of functionalized TiO$_2$ NPs obtained by reaction of oxone with (a) MnII–L–P25 and (b) MnIII–L–D70. The samples were not washed with water prior to EPR measurements. The 6–line EPR signal characteristic of aqueous Mn$^{2+}$ and a sharp organic radical signal are seen for both samples. A broad surface Mn(II) signal (see Figure S6) is also resolvable in both spectra. The spectra were collected in the dark at 7 K.
Figure S9. Simulated IR spectra of diphenyl amide in *cis* and *trans* configurations. Atoms in the diphenyl amide molecules are represented by spheres of different colors: H (silver), O (red), N (blue), C (light gray).

Figure S10. Light−*minus*−dark EPR spectrum of L−P25. A sharp resonance corresponding to organic radicals and a relatively small Ti$^{3+}$ (lattice−trapped electron in TiO$_2$) signal are labeled. The sample was subject to KMnO$_4$ treatment and was washed with water prior to EPR measurements. The spectrum was collected in the dark at 7 K.
Complete Reference 53: